論文の概要: An Explainable and Conformal AI Model to Detect Temporomandibular Joint Involvement in Children Suffering from Juvenile Idiopathic Arthritis
- arxiv url: http://arxiv.org/abs/2405.01617v1
- Date: Thu, 2 May 2024 16:51:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 15:04:28.144284
- Title: An Explainable and Conformal AI Model to Detect Temporomandibular Joint Involvement in Children Suffering from Juvenile Idiopathic Arthritis
- Title(参考訳): 若年性特発性関節炎患児における顎関節病変検出のための説明可能なコンフォーマルAIモデル
- Authors: Lena Todnem Bach Christensen, Dikte Straadt, Stratos Vassis, Christian Marius Lillelund, Peter Bangsgaard Stoustrup, Ruben Pauwels, Thomas Klit Pedersen, Christian Fischer Pedersen,
- Abstract要約: 若年性特発性関節炎(JIA)は小児期および青年期で最も多い慢性関節リウマチである。
JIA患者では顎関節(TMJ)が最も頻度が高い関節である。
臨床検査は、TMJの関与を診断するための最も費用対効果の高い方法であるが、臨床医は、臨床検査でのみ使用される場合、解釈し、不正確であると判断する。
本研究は、臨床医がTMJの関与を評価するのに役立つ説明可能な人工知能(AI)モデルを実装した。
- 参考スコア(独自算出の注目度): 0.6424287896973291
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Juvenile idiopathic arthritis (JIA) is the most common rheumatic disease during childhood and adolescence. The temporomandibular joints (TMJ) are among the most frequently affected joints in patients with JIA, and mandibular growth is especially vulnerable to arthritic changes of the TMJ in children. A clinical examination is the most cost-effective method to diagnose TMJ involvement, but clinicians find it difficult to interpret and inaccurate when used only on clinical examinations. This study implemented an explainable artificial intelligence (AI) model that can help clinicians assess TMJ involvement. The classification model was trained using Random Forest on 6154 clinical examinations of 1035 pediatric patients (67% female, 33% male) and evaluated on its ability to correctly classify TMJ involvement or not on a separate test set. Most notably, the results show that the model can classify patients within two years of their first examination as having TMJ involvement with a precision of 0.86 and a sensitivity of 0.7. The results show promise for an AI model in the assessment of TMJ involvement in children and as a decision support tool.
- Abstract(参考訳): 若年性特発性関節炎(JIA)は小児期および青年期で最も多い慢性関節リウマチである。
顎関節症(顎関節症)はJIA患者において最も頻度の高い関節の1つであり, 顎の成長は小児における顎関節関節の関節的変化に対して特に脆弱である。
臨床検査は、TMJの関与を診断するための最も費用対効果の高い方法であるが、臨床医は、臨床検査でのみ使用される場合、解釈し、不正確であると判断する。
本研究は、臨床医がTMJの関与を評価するのに役立つ説明可能な人工知能(AI)モデルを実装した。
分類モデルは,1035名の小児患者(女性67%,男性33%)の6154名を対象にランダムフォレストを用いて訓練し,TMJの関与を正しく分類する能力について検討した。
その結果,初診後2年以内にTMJの精度0.86,感度0.7と分類できることが示唆された。
その結果,子供におけるTMJの関与評価や意思決定支援ツールとしてのAIモデルの実現が期待できることがわかった。
関連論文リスト
- Artificial intelligence for abnormality detection in high volume neuroimaging: a systematic review and meta-analysis [0.5934394862891423]
神経画像における異常を検出する人工知能(AI)モデルを評価するほとんどの研究は、非表現的な患者コホートで試験されている。
目的は、診断テストの精度を判定し、第一線高ボリュームのニューロイメージングタスクを実行するAIモデルの使用を支持する証拠を要約することであった。
論文 参考訳(メタデータ) (2024-05-09T10:12:17Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Detection of subclinical atherosclerosis by image-based deep learning on chest x-ray [86.38767955626179]
460胸部X線で冠状動脈カルシウム(CAC)スコアを予測する深層学習アルゴリズムを開発した。
AICACモデルの診断精度は, 曲線下領域(AUC)で評価された。
論文 参考訳(メタデータ) (2024-03-27T16:56:14Z) - Segmentation of Knee Bones for Osteoarthritis Assessment: A Comparative
Analysis of Supervised, Few-Shot, and Zero-Shot Learning Approaches [4.918419052486409]
そこで本研究では,手動分割骨を用いた2次元骨形態解析を行い,痛み条件に関連する形態的特徴について検討した。
6つのセマンティックセグメンテーションアルゴリズムを用いて,X線画像から大腿骨骨と大腿骨骨を抽出する。
数発の学習に基づくアルゴリズムであるUniverSegは、Diceスコアが99.69%で大腿骨が99.69%、ティビアが99.60%という優れたセグメンテーション結果を示した。
論文 参考訳(メタデータ) (2024-03-13T17:58:34Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Atrial Septal Defect Detection in Children Based on Ultrasound Video
Using Multiple Instances Learning [14.62565592495898]
本稿では,心房中隔欠損診断を支援するための心エコー画像に基づく深層学習手法を提案する。
心房中隔(subAS)と低中隔4区画(LPS4C)の2つの標準ビューをASDを同定する2つのビューとして選択した。
ASD検出では,89.33 AUC,84.95精度,85.70感度,81.51特異度,81.99F1スコアが得られた。
論文 参考訳(メタデータ) (2023-06-06T16:25:29Z) - Deep-Learning Tool for Early Identifying Non-Traumatic Intracranial
Hemorrhage Etiology based on CT Scan [40.51754649947294]
深層学習モデルは、2011年1月から2018年4月までに収集された非外傷性ICHを用いた1868個のNCCTスキャンを用いて開発された。
診断成績は臨床医の成績と比較した。
臨床医は, システム拡張による特定の出血エチオロジーの感度, 特異性, 精度を著しく改善した。
論文 参考訳(メタデータ) (2023-02-02T08:45:17Z) - Intelligent Sight and Sound: A Chronic Cancer Pain Dataset [74.77784420691937]
本稿では,Intelligent Sight and Sound (ISS) 臨床試験の一環として収集された,最初の慢性ガン痛データセットを紹介する。
これまで収集されたデータは29の患者、509のスマートフォンビデオ、189,999のフレーム、そして自己報告された感情と活動の痛みのスコアから成っている。
静的画像とマルチモーダルデータを用いて、自己報告された痛みレベルを予測する。
論文 参考訳(メタデータ) (2022-04-07T22:14:37Z) - What Do You See in this Patient? Behavioral Testing of Clinical NLP
Models [69.09570726777817]
本稿では,入力の変化に関する臨床結果モデルの振る舞いを評価する拡張可能なテストフレームワークを提案する。
私たちは、同じデータを微調整しても、モデル行動は劇的に変化し、最高のパフォーマンスのモデルが常に最も医学的に可能なパターンを学習していないことを示しています。
論文 参考訳(メタデータ) (2021-11-30T15:52:04Z) - Learning to Automatically Diagnose Multiple Diseases in Pediatric Chest
Radiographs Using Deep Convolutional Neural Networks [0.4697611383288171]
ディープ畳み込みニューラルネットワーク(D-CNN)は成人の胸部X線写真(CXR)スキャンにおいて顕著な性能を示した。
本稿では,5,017名の小児CXRスキャンの大規模なデータセットを遡及的に収集し,それぞれを経験者によって手動でラベル付けする。
その後、D-CNNモデルは3,550個の注釈付きスキャンで訓練され、複数の小児肺病理を自動分類する。
論文 参考訳(メタデータ) (2021-08-14T08:14:52Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
本研究は,243名の非侵襲的特徴(年齢,性別,左室容積率,HRV15)を用いて,一連のANNの訓練と評価を行った。
最高の結果は、7つの入力パラメータと7つの隠れノードを使用して、トレーニングと検証データセットに対して98.9%と82%の精度で得られた。
論文 参考訳(メタデータ) (2020-10-29T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。