論文の概要: Optimization without Retraction on the Random Generalized Stiefel Manifold
- arxiv url: http://arxiv.org/abs/2405.01702v3
- Date: Fri, 08 Nov 2024 18:17:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-11 14:52:51.517296
- Title: Optimization without Retraction on the Random Generalized Stiefel Manifold
- Title(参考訳): ランダム一般化スティフェル多様体上のリトラクションなし最適化
- Authors: Simon Vary, Pierre Ablin, Bin Gao, P. -A. Absil,
- Abstract要約: 本稿では,B$のランダムな推定値にのみアクセスしながら,最適化問題を解く,安価な反復手法を提案する。
我々の方法はすべての反復において制約を強制するのではなく、予想で定義される一般化されたスティーフェル多様体上の臨界点に収束する反復を生成する。
- 参考スコア(独自算出の注目度): 9.301728976515255
- License:
- Abstract: Optimization over the set of matrices $X$ that satisfy $X^\top B X = I_p$, referred to as the generalized Stiefel manifold, appears in many applications involving sampled covariance matrices such as the canonical correlation analysis (CCA), independent component analysis (ICA), and the generalized eigenvalue problem (GEVP). Solving these problems is typically done by iterative methods that require a fully formed $B$. We propose a cheap stochastic iterative method that solves the optimization problem while having access only to random estimates of $B$. Our method does not enforce the constraint in every iteration; instead, it produces iterations that converge to critical points on the generalized Stiefel manifold defined in expectation. The method has lower per-iteration cost, requires only matrix multiplications, and has the same convergence rates as its Riemannian optimization counterparts that require the full matrix $B$. Experiments demonstrate its effectiveness in various machine learning applications involving generalized orthogonality constraints, including CCA, ICA, and the GEVP.
- Abstract(参考訳): X^\top B X = I_p$ を満たす行列の集合上の最適化は一般化スティーフェル多様体と呼ばれ、正準相関解析(CCA)、独立成分解析(ICA)、一般化固有値問題(GEVP)などのサンプル共分散行列を含む多くの応用に現れる。
これらの問題の解決は、通常、完全に構成された$B$を必要とする反復的な方法によって行われる。
本稿では,B$のランダムな推定値にのみアクセス可能でありながら,最適化問題を解く,安価な確率的反復法を提案する。
我々の方法はすべての反復において制約を強制するのではなく、予想で定義される一般化されたスティーフェル多様体上の臨界点に収束する反復を生成する。
この手法は点当たりのコストが低く、行列乗法しか必要とせず、リーマン最適化と同じ収束率を持ち、完全行列の$B$を必要とする。
実験は、CCA、ICA、GEVPを含む一般化直交制約を含む様々な機械学習アプリケーションでその効果を示す。
関連論文リスト
- Riemannian coordinate descent algorithms on matrix manifolds [12.05722932030768]
行列多様体上で計算効率の良い座標降下(CD)アルゴリズムを開発するための一般的なフレームワークを提供する。
我々は、Stiefel, Grassmann, (Generalized) hyperbolic, symplectic, and symmetric positive (semi) definite などの多様体に対するCDアルゴリズムを提案する。
我々はそれらの収束と複雑性を分析し、いくつかのアプリケーションでその効果を実証的に説明する。
論文 参考訳(メタデータ) (2024-06-04T11:37:11Z) - Low-complexity subspace-descent over symmetric positive definite
manifold [9.346050098365648]
対称正定値多様体(SPD)上の関数の最小化のための低複素性アルゴリズムを開発する。
提案手法は、慎重に選択された部分空間を利用して、更新をイテレートのコレスキー因子とスパース行列の積として記述することができる。
論文 参考訳(メタデータ) (2023-05-03T11:11:46Z) - Manifold Free Riemannian Optimization [4.484251538832438]
滑らかな多様体 $mathcalM$ を用いて最適化問題を解くための原理的枠組みを提案する。
代数学M におけるコスト関数 $(x_i, y_i) の雑音のないサンプル集合 mathbbR$ と多様体 $mathcalM$ の固有次元を用いる。
論文 参考訳(メタデータ) (2022-09-07T16:19:06Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
構成問題の複雑さを軽減するために,MSVR (Multi-block-probe Variance Reduced) という新しい手法を提案する。
本研究の結果は, 試料の複雑さの順序や強靭性への依存など, 様々な面で先行して改善された。
論文 参考訳(メタデータ) (2022-07-18T12:03:26Z) - Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming [53.63469275932989]
制約付き非線形最適化問題のオンライン統計的推測を考察する。
これらの問題を解決するために、逐次二次計画法(StoSQP)を適用する。
論文 参考訳(メタデータ) (2022-05-27T00:34:03Z) - Sparse Quadratic Optimisation over the Stiefel Manifold with Application
to Permutation Synchronisation [71.27989298860481]
二次目的関数を最大化するスティーフェル多様体上の行列を求める非最適化問題に対処する。
そこで本研究では,支配的固有空間行列を求めるための,単純かつ効果的なスパーシティプロモーティングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-09-30T19:17:35Z) - Reducing the Variance of Gaussian Process Hyperparameter Optimization
with Preconditioning [54.01682318834995]
プレコンディショニングは、行列ベクトル乗算を含む反復的な方法にとって非常に効果的なステップである。
プレコンディショニングには、これまで検討されていなかった付加的なメリットがあることを実証する。
基本的に無視可能なコストで、同時に分散を低減することができる。
論文 参考訳(メタデータ) (2021-07-01T06:43:11Z) - An Online Riemannian PCA for Stochastic Canonical Correlation Analysis [37.8212762083567]
投影行列の再パラメータ化を用いた正準相関解析(CCA)のための効率的なアルゴリズム(RSG+)を提案する。
本論文は,その特性の定式化と技術的解析に主眼を置いているが,本実験により,一般的なデータセットに対する経験的挙動が極めて有望であることが確認された。
論文 参考訳(メタデータ) (2021-06-08T23:38:29Z) - On Stochastic Moving-Average Estimators for Non-Convex Optimization [105.22760323075008]
本稿では,移動平均(SEMA)問題に基づく広く利用されている推定器のパワーを実証する。
これらすべてのアートな結果に対して、これらのアートな問題に対する結果も提示します。
論文 参考訳(メタデータ) (2021-04-30T08:50:24Z) - Linear-Sample Learning of Low-Rank Distributions [56.59844655107251]
ktimes k$, rank-r$, matrices to normalized $L_1$ distance requires $Omega(frackrepsilon2)$ sample。
我々は、$cal O(frackrepsilon2log2fracepsilon)$ sample, a number linear in the high dimension, and almost linear in the matrices, usually low, rank proofs.というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-09-30T19:10:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。