論文の概要: Riemannian coordinate descent algorithms on matrix manifolds
- arxiv url: http://arxiv.org/abs/2406.02225v1
- Date: Tue, 4 Jun 2024 11:37:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-05 16:42:06.212569
- Title: Riemannian coordinate descent algorithms on matrix manifolds
- Title(参考訳): 行列多様体上のリーマン座標降下アルゴリズム
- Authors: Andi Han, Pratik Jawanpuria, Bamdev Mishra,
- Abstract要約: 行列多様体上で計算効率の良い座標降下(CD)アルゴリズムを開発するための一般的なフレームワークを提供する。
我々は、Stiefel, Grassmann, (Generalized) hyperbolic, symplectic, and symmetric positive (semi) definite などの多様体に対するCDアルゴリズムを提案する。
我々はそれらの収束と複雑性を分析し、いくつかのアプリケーションでその効果を実証的に説明する。
- 参考スコア(独自算出の注目度): 12.05722932030768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many machine learning applications are naturally formulated as optimization problems on Riemannian manifolds. The main idea behind Riemannian optimization is to maintain the feasibility of the variables while moving along a descent direction on the manifold. This results in updating all the variables at every iteration. In this work, we provide a general framework for developing computationally efficient coordinate descent (CD) algorithms on matrix manifolds that allows updating only a few variables at every iteration while adhering to the manifold constraint. In particular, we propose CD algorithms for various manifolds such as Stiefel, Grassmann, (generalized) hyperbolic, symplectic, and symmetric positive (semi)definite. While the cost per iteration of the proposed CD algorithms is low, we further develop a more efficient variant via a first-order approximation of the objective function. We analyze their convergence and complexity, and empirically illustrate their efficacy in several applications.
- Abstract(参考訳): 多くの機械学習アプリケーションは自然にリーマン多様体上の最適化問題として定式化されている。
リーマン最適化の背景にある主要な考え方は、多様体上の降下方向に沿って移動しながら変数の実現性を維持することである。
これにより、イテレーション毎にすべての変数が更新される。
本研究では,行列多様体上の計算効率の良い座標降下(CD)アルゴリズムを開発するための一般的なフレームワークを提供する。
特に、Stiefel, Grassmann, (Generalized) hyperbolic, symplectic, and symmetric positive (semi) definite などの多様体に対するCDアルゴリズムを提案する。
提案したCDアルゴリズムのイテレーション当たりのコストは低いが、目的関数の1次近似を用いてより効率的な変種を開発する。
我々はそれらの収束と複雑性を分析し、いくつかのアプリケーションでその効果を実証的に説明する。
関連論文リスト
- Riemannian Bilevel Optimization [35.42472057648458]
特に,2次情報を回避することを目的とした,バッチおよび勾配に基づく手法に着目する。
本稿では,一階勾配情報を活用する手法である$mathrmRF2SA$を提案し,分析する。
様々な設定の下で、$epsilon$-stationary 点に達するための明示的な収束率を提供する。
論文 参考訳(メタデータ) (2024-05-22T20:49:01Z) - Decentralized Riemannian Conjugate Gradient Method on the Stiefel
Manifold [59.73080197971106]
本稿では,最急降下法よりも高速に収束する一階共役最適化法を提案する。
これはスティーフェル多様体上の大域収束を達成することを目的としている。
論文 参考訳(メタデータ) (2023-08-21T08:02:16Z) - Low-complexity subspace-descent over symmetric positive definite
manifold [9.346050098365648]
対称正定値多様体(SPD)上の関数の最小化のための低複素性アルゴリズムを開発する。
提案手法は、慎重に選択された部分空間を利用して、更新をイテレートのコレスキー因子とスパース行列の積として記述することができる。
論文 参考訳(メタデータ) (2023-05-03T11:11:46Z) - Faster Riemannian Newton-type Optimization by Subsampling and Cubic
Regularization [3.867143522757309]
この研究は、制約集合が多様体構造を意味するような制約付き大規模非制約最適化に関するものである。
本稿では,収束性の向上と計算コストの削減を目的とした2階サドル最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-22T00:37:44Z) - Extrinsic Bayesian Optimizations on Manifolds [1.3477333339913569]
オイクリッド多様体上の一般最適化問題に対する外部ベイズ最適化(eBO)フレームワークを提案する。
我々のアプローチは、まず多様体を高次元空間に埋め込むことによって、外部ガウス過程を採用することである。
これにより、複素多様体上の最適化のための効率的でスケーラブルなアルゴリズムが導かれる。
論文 参考訳(メタデータ) (2022-12-21T06:10:12Z) - Multi-block-Single-probe Variance Reduced Estimator for Coupled
Compositional Optimization [49.58290066287418]
構成問題の複雑さを軽減するために,MSVR (Multi-block-probe Variance Reduced) という新しい手法を提案する。
本研究の結果は, 試料の複雑さの順序や強靭性への依存など, 様々な面で先行して改善された。
論文 参考訳(メタデータ) (2022-07-18T12:03:26Z) - On a class of geodesically convex optimization problems solved via
Euclidean MM methods [50.428784381385164]
ユークリッド凸化関数の違いは、統計学と機械学習の異なるタイプの問題の違いとして記述できることを示す。
最終的に、より広い範囲、より広い範囲の作業を支援するのです。
論文 参考訳(メタデータ) (2022-06-22T23:57:40Z) - Geometry-aware Bayesian Optimization in Robotics using Riemannian
Mat\'ern Kernels [64.62221198500467]
ベイズ最適化のための幾何対応カーネルの実装方法を示す。
この技術は、ロボット工学における制御パラメータチューニング、パラメトリックポリシー適応、構造設計に利用できる。
論文 参考訳(メタデータ) (2021-11-02T09:47:22Z) - Optimization on manifolds: A symplectic approach [127.54402681305629]
本稿では、最適化問題を解くための一般的な枠組みとして、ディラックの制約付きハミルトン系理論の散逸拡張を提案する。
我々の(加速された)アルゴリズムのクラスは単純で効率的なだけでなく、幅広い文脈にも適用できる。
論文 参考訳(メタデータ) (2021-07-23T13:43:34Z) - Automatic differentiation for Riemannian optimization on low-rank matrix
and tensor-train manifolds [71.94111815357064]
科学計算および機械学習アプリケーションでは、行列およびより一般的な多次元配列(テンソル)は、しばしば低ランク分解の助けを借りて近似することができる。
低ランク近似を見つけるための一般的なツールの1つはリーマン最適化を使うことである。
論文 参考訳(メタデータ) (2021-03-27T19:56:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。