論文の概要: Interpretable Vital Sign Forecasting with Model Agnostic Attention Maps
- arxiv url: http://arxiv.org/abs/2405.01714v3
- Date: Tue, 21 May 2024 21:02:59 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 05:20:55.749525
- Title: Interpretable Vital Sign Forecasting with Model Agnostic Attention Maps
- Title(参考訳): モデル非依存アテンションマップを用いた解釈可能なバイタルサイン予測
- Authors: Yuwei Liu, Chen Dan, Anubhav Bhatti, Bingjie Shen, Divij Gupta, Suraj Parmar, San Lee,
- Abstract要約: 本稿では,ディープラーニングモデルとアテンションメカニズムを組み合わせたフレームワークを提案する。
注意機構は,N-HiTSやN-BEATSといった様々なブラックボックス時系列予測モデルに適用可能であることを示す。
- 参考スコア(独自算出の注目度): 5.354055742467353
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sepsis is a leading cause of mortality in intensive care units (ICUs), representing a substantial medical challenge. The complexity of analyzing diverse vital signs to predict sepsis further aggravates this issue. While deep learning techniques have been advanced for early sepsis prediction, their 'black-box' nature obscures the internal logic, impairing interpretability in critical settings like ICUs. This paper introduces a framework that combines a deep learning model with an attention mechanism that highlights the critical time steps in the forecasting process, thus improving model interpretability and supporting clinical decision-making. We show that the attention mechanism could be adapted to various black box time series forecasting models such as N-HiTS and N-BEATS. Our method preserves the accuracy of conventional deep learning models while enhancing interpretability through attention-weight-generated heatmaps. We evaluated our model on the eICU-CRD dataset, focusing on forecasting vital signs for sepsis patients. We assessed its performance using mean squared error (MSE) and dynamic time warping (DTW) metrics. We explored the attention maps of N-HiTS and N-BEATS, examining the differences in their performance and identifying crucial factors influencing vital sign forecasting.
- Abstract(参考訳): セプシスは集中治療室(ICU)の死亡率の主要な原因であり、深刻な医療上の課題である。
敗血症を予測するために様々な重要な兆候を分析する複雑さは、この問題をさらに悪化させる。
深層学習技術は早期の敗血症予測のために進歩してきたが、その'ブラックボックス'という性質は内部ロジックを曖昧にし、ICUのようなクリティカルな設定での解釈性を損なう。
本稿では,深層学習モデルと注意機構を組み合わせたフレームワークを提案する。これは,予測過程における臨界時間ステップを強調し,モデル解釈性を改善し,臨床的意思決定を支援する。
注意機構は,N-HiTSやN-BEATSといった様々なブラックボックス時系列予測モデルに適用可能であることを示す。
本手法は,従来のディープラーニングモデルの精度を保ちながら,注目重み付きヒートマップによる解釈性を向上させる。
eICU-CRDデータセットを用いて,敗血症患者に対するバイタルサインの予測に焦点をあてた。
平均二乗誤差 (MSE) と動的時間歪み (DTW) 測定値を用いて評価を行った。
我々は,N-HiTS と N-BEATS の注意マップを探索し,その性能の違いを調べた。
関連論文リスト
- SurvCORN: Survival Analysis with Conditional Ordinal Ranking Neural Network [4.772480981435387]
本稿では,条件付き順序付きランキングネットワークを用いた生存曲線の予測手法であるSurvCORNを提案する。
また,モデル予測の精度を評価するための指標であるSurvMAEを導入する。
論文 参考訳(メタデータ) (2024-09-30T03:01:25Z) - Deep State-Space Generative Model For Correlated Time-to-Event Predictions [54.3637600983898]
そこで本研究では,様々な種類の臨床イベント間の相互作用を捉えるために,潜伏状態空間生成モデルを提案する。
また,死亡率と臓器不全の関連性について有意な知見が得られた。
論文 参考訳(メタデータ) (2024-07-28T02:42:36Z) - SepsisLab: Early Sepsis Prediction with Uncertainty Quantification and Active Sensing [67.8991481023825]
セプシスは米国での院内死亡の主な原因である。
既存の予測モデルは通常、情報不足の少ない高品質なデータで訓練される。
限られた観察により信頼性の低い高リスク患者に対して,ロバストな能動センシングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-24T04:47:36Z) - Evaluating the Fairness of the MIMIC-IV Dataset and a Baseline
Algorithm: Application to the ICU Length of Stay Prediction [65.268245109828]
本稿では、MIMIC-IVデータセットを用いて、滞在時間を予測するXGBoostバイナリ分類モデルにおける公平性とバイアスについて検討する。
この研究は、人口統計属性にわたるデータセットのクラス不均衡を明らかにし、データ前処理と特徴抽出を採用する。
この論文は、偏見を緩和するための公正な機械学習技術と、医療専門家とデータサイエンティストの協力的な努力の必要性について結論付けている。
論文 参考訳(メタデータ) (2023-12-31T16:01:48Z) - Vital Sign Forecasting for Sepsis Patients in ICUs [5.543372375499915]
本稿では,最先端のディープラーニング(DL)アーキテクチャを用いて,多段階予測システムを提案する。
我々は,過去6時間のデータから,今後3時間分のバイタルサインを予測できるDLベースのバイタルサイン予測システムを導入する。
平均二乗誤差 (MSE) と動的時間歪み (DTW) 測定値を用いて, モデルの性能評価を行った。
論文 参考訳(メタデータ) (2023-11-08T15:47:58Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - Hypergraph Convolutional Networks for Fine-grained ICU Patient
Similarity Analysis and Risk Prediction [15.06049250330114]
集中治療ユニット(ICU、Intensive Care Unit)は、重篤な患者を認め、継続的な監視と治療を提供する病院の最も重要な部分の1つである。
臨床意思決定における医療従事者を支援するために,様々な患者結果予測手法が試みられている。
論文 参考訳(メタデータ) (2023-08-24T05:26:56Z) - ALRt: An Active Learning Framework for Irregularly Sampled Temporal Data [1.370633147306388]
セプシスは病院内の多くの患者に致命的な症状である。
本稿では, 短時間の時間的地平線に対するアクティブラーニング・リカレントニューラルネットワーク(ALRts)の利用により, セプシスなどの不規則な時間的事象の予測を改善することを提案する。
限られたデータに基づいてトレーニングされたアクティブラーニングRNNモデルは、トレーニングデータセット全体を用いたモデルに匹敵する堅牢なセシス予測を形成することができることを示す。
論文 参考訳(メタデータ) (2022-12-13T04:31:49Z) - Sepsis Prediction with Temporal Convolutional Networks [6.161443205488337]
我々のモデルはMIMIC IIIデータベースから抽出したデータに基づいて訓練されている。
いくつかの機械学習モデルとベンチマークして、このバイナリ分類タスクでは、我々のモデルの方が優れている。
論文 参考訳(メタデータ) (2022-05-31T01:14:38Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。