論文の概要: ATTAXONOMY: Unpacking Differential Privacy Guarantees Against Practical Adversaries
- arxiv url: http://arxiv.org/abs/2405.01716v1
- Date: Thu, 2 May 2024 20:23:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 14:34:45.214612
- Title: ATTAXONOMY: Unpacking Differential Privacy Guarantees Against Practical Adversaries
- Title(参考訳): ATTAXONOMY: 差別的プライバシー保護を現実の広告主から解放する
- Authors: Rachel Cummings, Shlomi Hod, Jayshree Sarathy, Marika Swanberg,
- Abstract要約: 我々は攻撃の詳細な分類を提供し、攻撃のさまざまな側面を示し、多くの現実世界の設定が検討されていることを強調している。
イスラエル厚生労働省が最近発表した、差分プライバシーを用いた出生データセットの実際のケーススタディを分析して、分類学を運用しています。
- 参考スコア(独自算出の注目度): 11.550822252074733
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Differential Privacy (DP) is a mathematical framework that is increasingly deployed to mitigate privacy risks associated with machine learning and statistical analyses. Despite the growing adoption of DP, its technical privacy parameters do not lend themselves to an intelligible description of the real-world privacy risks associated with that deployment: the guarantee that most naturally follows from the DP definition is protection against membership inference by an adversary who knows all but one data record and has unlimited auxiliary knowledge. In many settings, this adversary is far too strong to inform how to set real-world privacy parameters. One approach for contextualizing privacy parameters is via defining and measuring the success of technical attacks, but doing so requires a systematic categorization of the relevant attack space. In this work, we offer a detailed taxonomy of attacks, showing the various dimensions of attacks and highlighting that many real-world settings have been understudied. Our taxonomy provides a roadmap for analyzing real-world deployments and developing theoretical bounds for more informative privacy attacks. We operationalize our taxonomy by using it to analyze a real-world case study, the Israeli Ministry of Health's recent release of a birth dataset using DP, showing how the taxonomy enables fine-grained threat modeling and provides insight towards making informed privacy parameter choices. Finally, we leverage the taxonomy towards defining a more realistic attack than previously considered in the literature, namely a distributional reconstruction attack: we generalize Balle et al.'s notion of reconstruction robustness to a less-informed adversary with distributional uncertainty, and extend the worst-case guarantees of DP to this average-case setting.
- Abstract(参考訳): 微分プライバシ(DP)は、機械学習と統計分析に関連するプライバシーリスクを軽減するために、数学的なフレームワークである。
DPの定義から最も自然に従う保証は、1つのデータ記録を全て知っていて、無制限に補助的な知識を持つ敵によるメンバーシップ推論に対する保護である。
多くの設定では、この敵は現実世界のプライバシーパラメータを設定する方法を知るにはあまりにも強すぎる。
プライバシパラメータをコンテキスト化するための1つのアプローチは、技術的攻撃の成功を定義して測定することであるが、それを行うには、関連する攻撃空間を体系的に分類する必要がある。
本研究は,攻撃の様々な側面を示す詳細な分類法を提供し,実世界の多くの設定が検討されていることを強調した。
われわれの分類学は、現実世界の展開を分析し、より有益なプライバシー攻撃のための理論的境界を開発するためのロードマップを提供する。
イスラエルの厚生労働省が最近、DPを用いた出生データセットを公開し、その分類がどのようにしてきめ細かな脅威モデリングを可能にし、情報的プライバシーパラメータの選択に対する洞察を提供するかを示した。
最後に,本研究は,従来の文献より現実的な攻撃,すなわち分布再構成攻撃の定義に活用する。我々は,分布不確実性のある低インフォームの敵に対して,Balle et alの再構築堅牢性の概念を一般化し,DPの最悪の保証を,この平均ケース設定にまで拡張する。
関連論文リスト
- Privacy-Preserving Dynamic Assortment Selection [4.399892832075127]
本稿では,マルチノミアルロジット(MNL)バンドレートモデルを用いて,プライバシ保護のための動的アソシエーション選択のための新しいフレームワークを提案する。
弊社のアプローチでは、ノイズをユーザユーティリティ推定に統合し、探索とエクスプロイトのバランスを保ちつつ、堅牢なプライバシー保護を確保している。
論文 参考訳(メタデータ) (2024-10-29T19:28:01Z) - Bayes-Nash Generative Privacy Protection Against Membership Inference Attacks [24.330984323956173]
本稿では,データ共有機構出力のプライバシ保護のためのゲームモデルを提案する。
本稿では,ベイズ・ナッシュ生成プライバシ(BNGP)とベイズ生成プライバシ(BGP)のリスクについて紹介する。
本手法は要約統計の共有に応用され、MIAは集約データからでも個人を識別できる。
論文 参考訳(メタデータ) (2024-10-09T20:29:04Z) - A Game-Theoretic Approach to Privacy-Utility Tradeoff in Sharing Genomic Summary Statistics [24.330984323956173]
本稿では,ゲノムサマリー統計の共有において,最適なプライバシ・ユーティリティ・トレードオフのためのゲーム理論フレームワークを提案する。
実験により,提案手法は,技術状況よりも強力な攻撃と強力な防衛戦略をもたらすことが示された。
論文 参考訳(メタデータ) (2024-06-03T22:09:47Z) - Secure Aggregation is Not Private Against Membership Inference Attacks [66.59892736942953]
フェデレーション学習におけるSecAggのプライバシーへの影響について検討する。
SecAggは、単一のトレーニングラウンドであっても、メンバシップ推論攻撃に対して弱いプライバシを提供します。
以上の結果から,ノイズ注入などの付加的なプライバシー強化機構の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2024-03-26T15:07:58Z) - Reconciling AI Performance and Data Reconstruction Resilience for
Medical Imaging [52.578054703818125]
人工知能(AI)モデルは、トレーニングデータの情報漏洩に対して脆弱であり、非常に敏感である。
差別化プライバシ(DP)は、定量的なプライバシー予算を設定することで、これらの感受性を回避することを目的としている。
非常に大きなプライバシ予算を使用することで、リコンストラクション攻撃は不可能であり、パフォーマンスの低下は無視可能であることを示す。
論文 参考訳(メタデータ) (2023-12-05T12:21:30Z) - Discriminative Adversarial Privacy: Balancing Accuracy and Membership
Privacy in Neural Networks [7.0895962209555465]
DAP(Dariminative Adversarial Privacy)は、モデルの性能、速度、プライバシのバランスを達成するために設計された学習技術である。
DAPは、MIAの誤差を最大化しながら予測誤差を最小化できる新しい損失関数に基づく敵の訓練に依存している。
さらに、パフォーマンスプライバシのトレードオフを捉えるために、AOP(Acuracy Over Privacy)と呼ばれる新しいメトリクスを紹介します。
論文 参考訳(メタデータ) (2023-06-05T17:25:45Z) - Theoretically Principled Federated Learning for Balancing Privacy and
Utility [61.03993520243198]
モデルパラメータを歪ませることでプライバシを保護する保護機構の一般学習フレームワークを提案する。
フェデレートされた学習における各コミュニケーションラウンドにおいて、各クライアント上の各モデルパラメータに対して、パーソナライズされたユーティリティプライバシトレードオフを実現することができる。
論文 参考訳(メタデータ) (2023-05-24T13:44:02Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
垂直ロジスティック回帰(VLR)をミニバッチ降下勾配で訓練した。
我々は、オープンソースのフェデレーション学習フレームワークのクラスにおいて、VLRの包括的で厳密なプライバシー分析を提供する。
論文 参考訳(メタデータ) (2022-07-19T05:47:30Z) - Defending against Reconstruction Attacks with R\'enyi Differential
Privacy [72.1188520352079]
レコンストラクション攻撃により、敵は訓練されたモデルのみにアクセスすることで、トレーニングセットのデータサンプルを再生することができる。
差別化プライバシはこのような攻撃に対する既知の解決策であるが、比較的大きなプライバシ予算で使用されることが多い。
また、同機構により、従来の文献よりも優れた復元攻撃に対するプライバシー保証を導出できることを示す。
論文 参考訳(メタデータ) (2022-02-15T18:09:30Z) - Semantics-Preserved Distortion for Personal Privacy Protection in Information Management [65.08939490413037]
本稿では,意味的整合性を維持しつつテキストを歪ませる言語学的アプローチを提案する。
本稿では, 意味保存歪みの枠組みとして, 生成的アプローチと置換的アプローチの2つを提示する。
また、特定の医療情報管理シナリオにおけるプライバシ保護についても検討し、機密データの記憶を効果的に制限していることを示す。
論文 参考訳(メタデータ) (2022-01-04T04:01:05Z) - Federated Deep Learning with Bayesian Privacy [28.99404058773532]
フェデレートラーニング(FL)は、ユーザ間でプライベートデータを共有せずにモデルを協調的に学習することで、データのプライバシを保護することを目的としている。
ホモモルフィック暗号化(HE)ベースの手法は、セキュアなプライバシ保護を提供するが、非常に高い計算と通信のオーバーヘッドに悩まされる。
差分プライバシ(DP)を用いたディープラーニングは,複雑な管理コストで実践的な学習アルゴリズムとして実装された。
論文 参考訳(メタデータ) (2021-09-27T12:48:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。