論文の概要: Bayes-Nash Generative Privacy Protection Against Membership Inference Attacks
- arxiv url: http://arxiv.org/abs/2410.07414v1
- Date: Wed, 9 Oct 2024 20:29:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 20:37:14.221596
- Title: Bayes-Nash Generative Privacy Protection Against Membership Inference Attacks
- Title(参考訳): ベイズ・ナッシュによる会員推測攻撃に対するプライバシー保護
- Authors: Tao Zhang, Rajagopal Venkatesaraman, Rajat K. De, Bradley A. Malin, Yevgeniy Vorobeychik,
- Abstract要約: 本稿では,データ共有機構出力のプライバシ保護のためのゲームモデルを提案する。
本稿では,ベイズ・ナッシュ生成プライバシ(BNGP)とベイズ生成プライバシ(BGP)のリスクについて紹介する。
本手法は要約統計の共有に応用され、MIAは集約データからでも個人を識別できる。
- 参考スコア(独自算出の注目度): 24.330984323956173
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: An ability to share data, even in aggregated form, is critical to advancing both conventional and data science. However, insofar as such datasets are comprised of individuals, their membership in these datasets is often viewed as sensitive, with membership inference attacks (MIAs) threatening to violate their privacy. We propose a Bayesian game model for privacy-preserving publishing of data-sharing mechanism outputs (for example, summary statistics for sharing genomic data). In this game, the defender minimizes a combination of expected utility and privacy loss, with the latter being maximized by a Bayes-rational attacker. We propose a GAN-style algorithm to approximate a Bayes-Nash equilibrium of this game, and introduce the notions of Bayes-Nash generative privacy (BNGP) and Bayes generative privacy (BGP) risk that aims to optimally balance the defender's privacy and utility in a way that is robust to the attacker's heterogeneous preferences with respect to true and false positives. We demonstrate the properties of composition and post-processing for BGP risk and establish conditions under which BNGP and pure differential privacy (PDP) are equivalent. We apply our method to sharing summary statistics, where MIAs can re-identify individuals even from aggregated data. Theoretical analysis and empirical results demonstrate that our Bayesian game-theoretic method outperforms state-of-the-art approaches for privacy-preserving sharing of summary statistics.
- Abstract(参考訳): 集約された形式でデータを共有する能力は、従来の科学とデータサイエンスの両方を前進させる上で重要である。
しかし、そのようなデータセットは個人で構成されており、これらのデータセットのメンバシップはしばしば機密と見なされ、メンバーシップ推論攻撃(MIA)はプライバシを侵害する恐れがある。
本稿では,データ共有機構出力のプライバシ保護のためのベイズゲームモデルを提案する(ゲノムデータの共有に関する要約統計など)。
このゲームでは、ディフェンダーは期待されるユーティリティとプライバシの損失を最小化し、後者はベイズ・ライエンシャル・アタッカーによって最大化される。
本稿では,このゲームのベイズ・ナッシュ均衡を近似するGANスタイルのアルゴリズムを提案し,真偽陽性に対する攻撃者の異種嗜好に頑健な方法で,攻撃者のプライバシと実用性を最適にバランスさせることを目的としたベイズ・ナッシュ生成プライバシ(BNGP)とベイズ・ナッシュ生成プライバシ(BGP)リスクの概念を紹介する。
我々は,BGPリスクに対する合成と後処理の特性を実証し,BNGPと純粋微分プライバシー(PDP)が等価である条件を確立する。
本手法は要約統計の共有に応用され、MIAは集約データからでも個人を識別できる。
理論的解析と実証実験により,ベイジアンゲーム理論法は,サマリ統計のプライバシー保全のための最先端手法よりも優れていることが示された。
関連論文リスト
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
本稿では,PseudoProbability Unlearning (PPU)を提案する。
提案手法は,最先端の手法に比べて20%以上の誤りを忘れる改善を実現している。
論文 参考訳(メタデータ) (2024-11-04T21:27:06Z) - A Game-Theoretic Approach to Privacy-Utility Tradeoff in Sharing Genomic Summary Statistics [24.330984323956173]
本稿では,ゲノムサマリー統計の共有において,最適なプライバシ・ユーティリティ・トレードオフのためのゲーム理論フレームワークを提案する。
実験により,提案手法は,技術状況よりも強力な攻撃と強力な防衛戦略をもたらすことが示された。
論文 参考訳(メタデータ) (2024-06-03T22:09:47Z) - Incentives in Private Collaborative Machine Learning [56.84263918489519]
コラボレーション型機械学習は、複数のパーティのデータに基づいてモデルをトレーニングする。
インセンティブとして差分プライバシー(DP)を導入する。
合成および実世界のデータセットに対するアプローチの有効性と実用性を実証的に実証した。
論文 参考訳(メタデータ) (2024-04-02T06:28:22Z) - Privacy Amplification for the Gaussian Mechanism via Bounded Support [64.86780616066575]
インスタンスごとの差分プライバシー(pDP)やフィッシャー情報損失(FIL)といったデータ依存のプライバシ会計フレームワークは、固定されたトレーニングデータセット内の個人に対してきめ細かいプライバシー保証を提供する。
本稿では,データ依存会計下でのプライバシ保証を向上することを示すとともに,バウンドサポートによるガウス機構の簡単な修正を提案する。
論文 参考訳(メタデータ) (2024-03-07T21:22:07Z) - $\alpha$-Mutual Information: A Tunable Privacy Measure for Privacy
Protection in Data Sharing [4.475091558538915]
本稿では, 有基の$alpha$-Mutual Informationを調整可能なプライバシ尺度として採用する。
我々は、プライバシ保護を提供するためにオリジナルのデータを操作するための一般的な歪みに基づくメカニズムを定式化する。
論文 参考訳(メタデータ) (2023-10-27T16:26:14Z) - Conditional Density Estimations from Privacy-Protected Data [0.0]
プライバシ保護されたデータセットからのシミュレーションに基づく推論手法を提案する。
本稿では,感染性疾患モデルと通常の線形回帰モデルに基づく個別時系列データについて述べる。
論文 参考訳(メタデータ) (2023-10-19T14:34:17Z) - Membership Inference Attacks against Synthetic Data through Overfitting
Detection [84.02632160692995]
我々は、攻撃者が基礎となるデータ分布についてある程度の知識を持っていると仮定する現実的なMIA設定について論じる。
生成モデルの局所的なオーバーフィッティングをターゲットとして,メンバシップを推論することを目的とした密度ベースMIAモデルであるDOMIASを提案する。
論文 参考訳(メタデータ) (2023-02-24T11:27:39Z) - Enabling Trade-offs in Privacy and Utility in Genomic Data Beacons and
Summary Statistics [26.99521354120141]
要約データやBeaconの応答とプライバシを明示的にトレードオフするための最適化ベースのアプローチを導入します。
第一に、攻撃者はメンバーシップ推論のクレームを行うために確率比テストを適用する。
第2に、攻撃者は、個人間のスコアの分離に対するデータリリースの影響を考慮に入れたしきい値を使用する。
論文 参考訳(メタデータ) (2023-01-11T19:16:13Z) - No Free Lunch in "Privacy for Free: How does Dataset Condensation Help
Privacy" [75.98836424725437]
データプライバシを保護するために設計された新しい手法は、慎重に精査する必要がある。
プライバシ保護の失敗は検出し難いが,プライバシ保護法を実装したシステムが攻撃された場合,破滅的な結果につながる可能性がある。
論文 参考訳(メタデータ) (2022-09-29T17:50:23Z) - Federated Deep Learning with Bayesian Privacy [28.99404058773532]
フェデレートラーニング(FL)は、ユーザ間でプライベートデータを共有せずにモデルを協調的に学習することで、データのプライバシを保護することを目的としている。
ホモモルフィック暗号化(HE)ベースの手法は、セキュアなプライバシ保護を提供するが、非常に高い計算と通信のオーバーヘッドに悩まされる。
差分プライバシ(DP)を用いたディープラーニングは,複雑な管理コストで実践的な学習アルゴリズムとして実装された。
論文 参考訳(メタデータ) (2021-09-27T12:48:40Z) - Differentially Private Federated Learning with Laplacian Smoothing [72.85272874099644]
フェデレートラーニングは、ユーザ間でプライベートデータを共有せずに、協調的にモデルを学習することで、データのプライバシを保護することを目的としている。
敵は、リリースしたモデルを攻撃することによって、プライベートトレーニングデータを推測することができる。
差別化プライバシは、トレーニングされたモデルの正確性や実用性を著しく低下させる価格で、このような攻撃に対する統計的保護を提供する。
論文 参考訳(メタデータ) (2020-05-01T04:28:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。