論文の概要: Explainability Guided Adversarial Evasion Attacks on Malware Detectors
- arxiv url: http://arxiv.org/abs/2405.01728v1
- Date: Thu, 2 May 2024 20:48:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 14:24:53.214275
- Title: Explainability Guided Adversarial Evasion Attacks on Malware Detectors
- Title(参考訳): マルウェア検出器の逆襲攻撃に関する説明可能性
- Authors: Kshitiz Aryal, Maanak Gupta, Mahmoud Abdelsalam, Moustafa Saleh,
- Abstract要約: 本研究は, 機械学習ベースのWindows PEマルウェア検出装置において, 敵の回避攻撃を強化するための説明可能性技術の適用に焦点を当てた。
この説明可能なツールは、与えられたマルウェア検出の意思決定プロセスに最も大きな影響を与えるPEマルウェアファイルの領域を特定する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: As the focus on security of Artificial Intelligence (AI) is becoming paramount, research on crafting and inserting optimal adversarial perturbations has become increasingly critical. In the malware domain, this adversarial sample generation relies heavily on the accuracy and placement of crafted perturbation with the goal of evading a trained classifier. This work focuses on applying explainability techniques to enhance the adversarial evasion attack on a machine-learning-based Windows PE malware detector. The explainable tool identifies the regions of PE malware files that have the most significant impact on the decision-making process of a given malware detector, and therefore, the same regions can be leveraged to inject the adversarial perturbation for maximum efficiency. Profiling all the PE malware file regions based on their impact on the malware detector's decision enables the derivation of an efficient strategy for identifying the optimal location for perturbation injection. The strategy should incorporate the region's significance in influencing the malware detector's decision and the sensitivity of the PE malware file's integrity towards modifying that region. To assess the utility of explainable AI in crafting an adversarial sample of Windows PE malware, we utilize the DeepExplainer module of SHAP for determining the contribution of each region of PE malware to its detection by a CNN-based malware detector, MalConv. Furthermore, we analyzed the significance of SHAP values at a more granular level by subdividing each section of Windows PE into small subsections. We then performed an adversarial evasion attack on the subsections based on the corresponding SHAP values of the byte sequences.
- Abstract(参考訳): 人工知能(AI)のセキュリティが最重要視されるにつれ、最適な対向的摂動の創造と挿入に関する研究がますます重要になっている。
マルウェア領域では、この逆のサンプル生成は、訓練された分類器を避けることを目的として、工芸品の摂動の正確さと配置に大きく依存する。
本研究は, 機械学習ベースのWindows PEマルウェア検出装置において, 敵の回避攻撃を強化するための説明可能性技術の適用に焦点を当てた。
この説明可能なツールは、与えられたマルウェア検出装置の意思決定プロセスに最も大きな影響を及ぼすPEマルウェアファイルの領域を識別するので、同じ領域を利用して敵の摂動を最大効率で注入することができる。
PEマルウェアのファイル領域のプロファイリングは、マルウェア検知器の決定に対する影響に基づいて、摂動注入の最適な場所を特定するための効率的な戦略の導出を可能にする。
この戦略は、マルウェア検知器の決定に影響を与える領域の重要性と、その領域を変更するためのPEマルウェアファイルの整合性に対する感受性を取り入れるべきである。
CNNベースのマルウェア検出装置であるMalConvを用いて, SHAPのDeepExplainerモジュールを用いて, PEマルウェアの各領域の発見に対する寄与を判定する。
さらに、Windows PEの各セクションを小さなサブセクションに分割することで、より粒度の高いSHAP値の意義を分析した。
次に,バイト配列の対応するSHAP値に基づいて,サブセクションに対する逆回避攻撃を行った。
関連論文リスト
- Semantic Data Representation for Explainable Windows Malware Detection Models [0.0]
本稿では,PEマルウェアファイルに対する再利用可能なセマンティックスキーマを提供するPEマルウェアオントロジーを提案する。
このオントロジーは、PEファイルの静的マルウェア解析に焦点を当てたEMBERデータセットの構造に着想を得たものである。
また、EMBERの実験を支援するために、分数データセットを含む意味的に処理されたEMBERデータも公開する。
論文 参考訳(メタデータ) (2024-03-18T11:17:27Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
我々は,マルウェア検出領域の非ランダム化スムース化技術を再設計し,DRSM(De-Randomized Smoothed MalConv)を開発した。
具体的には,実行可能ファイルの局所構造を最大に保ちながら,逆数バイトの影響を確実に抑制するウィンドウアブレーション方式を提案する。
私たちは、マルウェア実行ファイルの静的検出という領域で、認証された堅牢性を提供する最初の人です。
論文 参考訳(メタデータ) (2023-03-20T17:25:22Z) - Deep Image: A precious image based deep learning method for online
malware detection in IoT Environment [12.558284943901613]
本稿では,マルウェア解析の異なる視点を考察し,各サンプルの特徴のリスクレベルを算出した。
通常の機械学習基準、すなわち精度とFPRに加えて、サンプルのリスクに基づく基準も提案されている。
その結果,ディープ・ラーニング・アプローチがマルウェアの検出に有効であることが示唆された。
論文 参考訳(メタデータ) (2022-04-04T17:56:55Z) - Defending From Physically-Realizable Adversarial Attacks Through
Internal Over-Activation Analysis [61.68061613161187]
Z-Maskは、敵の攻撃に対する畳み込みネットワークの堅牢性を改善するための堅牢で効果的な戦略である。
提示されたディフェンスは、入力画像中の対向対象に対応する画素を検出し、隠蔽するために、内部ネットワーク機能で実行される特定のZスコア解析に依存する。
追加の実験では、Z-Maskは防衛対応攻撃に対して堅牢であることが示された。
論文 参考訳(メタデータ) (2022-03-14T17:41:46Z) - Adversarial Attacks against Windows PE Malware Detection: A Survey of
the State-of-the-Art [44.975088044180374]
本稿は,Windowsオペレーティングシステム,すなわちWindows PEのファイル形式である,ポータブル実行可能(PE)のファイル形式に焦点をあてる。
まず、ML/DLに基づくWindows PEマルウェア検出の一般的な学習フレームワークについて概説する。
次に、PEマルウェアのコンテキストにおいて、敵攻撃を行うという3つのユニークな課題を強調した。
論文 参考訳(メタデータ) (2021-12-23T02:12:43Z) - Mate! Are You Really Aware? An Explainability-Guided Testing Framework
for Robustness of Malware Detectors [49.34155921877441]
マルウェア検出装置のロバスト性を示すための説明可能性誘導型およびモデルに依存しないテストフレームワークを提案する。
次に、このフレームワークを使用して、操作されたマルウェアを検出する最先端のマルウェア検知器の能力をテストする。
我々の発見は、現在のマルウェア検知器の限界と、その改善方法に光を当てた。
論文 参考訳(メタデータ) (2021-11-19T08:02:38Z) - ML-based IoT Malware Detection Under Adversarial Settings: A Systematic
Evaluation [9.143713488498513]
本研究は,様々な表現と学習技術を利用した最先端のマルウェア検出手法を体系的に検討する。
本研究では, 剥ぎ取りやパディングなどの機能保存操作によるソフトウェア変異が, 検出精度を著しく低下させることを示した。
論文 参考訳(メタデータ) (2021-08-30T16:54:07Z) - Towards an Automated Pipeline for Detecting and Classifying Malware
through Machine Learning [0.0]
Windows Portable Executable File (PE) を分類できるマルウェア分類パイプラインを提案する。
入力PEサンプルが与えられた場合、悪意または良性のいずれかに分類される。
悪意のある場合、パイプラインは脅威タイプ、家族、行動を確立するためにさらに分析する。
論文 参考訳(メタデータ) (2021-06-10T10:07:50Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
攻撃者は、マルウェア分類器を訓練するために使用されるデータセットをターゲットとした、高度で効率的な中毒攻撃を、どのように起動できるかを示す。
マルウェア検出領域における他の中毒攻撃とは対照的に、我々の攻撃はマルウェアファミリーではなく、移植されたトリガーを含む特定のマルウェアインスタンスに焦点を当てている。
我々は、この新たに発見された深刻な脅威に対する将来の高度な防御に役立つ包括的検出手法を提案する。
論文 参考訳(メタデータ) (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
EXEmplesは、比較的少ない入力バイトを摂動することで、機械学習に基づく検出をバイパスすることができる。
我々は、機械学習モデルに対する過去の攻撃を包含し、一般化するだけでなく、3つの新たな攻撃を含む統一フレームワークを開発する。
これらの攻撃はFull DOS、Extended、Shiftと呼ばれ、DOSヘッダをそれぞれ操作し、拡張し、第1セクションの内容を変更することで、敵のペイロードを注入する。
論文 参考訳(メタデータ) (2020-08-17T07:16:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。