論文の概要: Human Factors in the LastPass Breach
- arxiv url: http://arxiv.org/abs/2405.01795v3
- Date: Mon, 20 May 2024 21:06:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-22 17:52:56.614061
- Title: Human Factors in the LastPass Breach
- Title(参考訳): ラストパス漂白における人為的要因
- Authors: Niroop Sugunaraj,
- Abstract要約: この論文は、サイバーセキュリティ対策への人間中心の考察の統合を論じている。
目標指向行動、認知的過負荷、人間の偏見(例えば、楽観主義、アンカーリング)、リスク行動などの要因を緩和することに焦点を当てている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper examines the complex nature of cyber attacks through an analysis of the LastPass breach. It argues for the integration of human-centric considerations into cybersecurity measures, focusing on mitigating factors such as goal-directed behavior, cognitive overload, human biases (e.g., optimism, anchoring), and risky behaviors. Findings from an analysis of this breach offers support to the perspective that addressing both the human and technical dimensions of cyber defense can significantly enhance the resilience of cyber systems against complex threats. This means maintaining a balanced approach while simultaneously simplifying user interactions, making users aware of biases, and discouraging risky practices are essential for preventing cyber incidents.
- Abstract(参考訳): 本稿では,LastPass攻撃の解析を通じて,サイバー攻撃の複雑な性質について検討する。
目標は、目標指向の行動、認知的過負荷、人間の偏見(例えば、楽観主義、アンカーリング)、リスク行動などの要因を緩和することに集中することである。
この侵害の分析から得られた発見は、サイバー防衛の人間的側面と技術的側面の両方に対処することで、複雑な脅威に対するサイバーシステムのレジリエンスを著しく向上させるという観点からの支持を提供する。
これは、ユーザのインタラクションをシンプルにしつつバランスのとれたアプローチを維持し、ユーザのバイアスを認識させ、サイバーインシデントを防ぐためにリスク回避のプラクティスが不可欠であることを意味します。
関連論文リスト
- Siren -- Advancing Cybersecurity through Deception and Adaptive Analysis [0.0]
このプロジェクトは、制御された環境に潜在的な脅威を引き出すための洗練された手法を採用している。
アーキテクチャフレームワークには、リンク監視プロキシ、動的リンク分析のための機械学習モデルが含まれている。
シミュレーションされたユーザアクティビティの組み入れは、潜在的攻撃者からの攻撃を捕捉し、学習するシステムの能力を拡張する。
論文 参考訳(メタデータ) (2024-06-10T12:47:49Z) - Cyber-sensorium: An Extension of the Cyber Public Health Framework [0.5852077003870417]
我々は、デジタルネットワークと人間の福祉に不可欠な生物学的神経システムとの類似性を引き出す。
このシステムに対するサイバー攻撃は深刻な世界的なリスクをもたらし、その保護の必要性を浮き彫りにした。
論文 参考訳(メタデータ) (2024-06-09T22:44:49Z) - Rethinking the Vulnerabilities of Face Recognition Systems:From a Practical Perspective [53.24281798458074]
顔認識システム(FRS)は、監視やユーザー認証を含む重要なアプリケーションにますます統合されている。
最近の研究によると、FRSの脆弱性は敵(例えば、敵パッチ攻撃)やバックドア攻撃(例えば、データ中毒の訓練)であることが明らかになっている。
論文 参考訳(メタデータ) (2024-05-21T13:34:23Z) - Towards in-situ Psychological Profiling of Cybercriminals Using Dynamically Generated Deception Environments [0.0]
サイバー犯罪は年間10兆ドル近くを世界経済に費やしていると見積もられている。
サイバー犯罪の脅威と戦うには、サイバー防衛に対する従来の周辺セキュリティアプローチが不十分であることが証明されている。
詐欺的手法は、攻撃者を誤解させ、重要な資産から切り離し、同時に脅威俳優にサイバー脅威情報を収集することを目的としている。
本稿では,サイバー攻撃のシミュレーション中に,攻撃者の身元をリアルタイムで把握するために開発された概念実証システムについて述べる。
論文 参考訳(メタデータ) (2024-05-19T09:48:59Z) - PsySafe: A Comprehensive Framework for Psychological-based Attack, Defense, and Evaluation of Multi-agent System Safety [70.84902425123406]
大規模言語モデル(LLM)で拡張されたマルチエージェントシステムは、集団知能において重要な能力を示す。
しかし、悪意のある目的のためにこのインテリジェンスを誤用する可能性があり、重大なリスクが生じる。
本研究では,エージェント心理学を基盤とした枠組み(PsySafe)を提案し,エージェントのダークパーソナリティ特性がリスク行動にどう影響するかを明らかにする。
実験の結果,エージェント間の集団的危険行動,エージェントが危険な行動を行う際の自己反射,エージェントの心理的評価と危険な行動との相関など,いくつかの興味深い現象が明らかになった。
論文 参考訳(メタデータ) (2024-01-22T12:11:55Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Reinforcement Learning for Feedback-Enabled Cyber Resilience [24.92055101652206]
サイバーレジリエンスは、不適切な保護とレジリエンスメカニズムを補完する新しいセキュリティパラダイムを提供する。
CRM(Cyber-Resilient Mechanism)は、既知の、あるいはゼロデイの脅威や、リアルタイムでの不確実性に適応するメカニズムである。
サイバーレジリエンスに関するRLに関する文献をレビューし、3つの主要な脆弱性に対するサイバーレジリエンスの防御について論じる。
論文 参考訳(メタデータ) (2021-07-02T01:08:45Z) - Review: Deep Learning Methods for Cybersecurity and Intrusion Detection
Systems [6.459380657702644]
人工知能(AI)と機械学習(ML)はサイバー防衛の鍵となる技術として活用することができる。
本稿では,ネットワーク侵入検出に使用される様々な深層学習手法について検討する。
論文 参考訳(メタデータ) (2020-12-04T23:09:35Z) - Measurement-driven Security Analysis of Imperceptible Impersonation
Attacks [54.727945432381716]
本稿では,ディープニューラルネットワークを用いた顔認識システムの実用性について検討する。
皮膚の色,性別,年齢などの要因が,特定の標的に対する攻撃を行う能力に影響を及ぼすことを示す。
また,攻撃者の顔のさまざまなポーズや視点に対して堅牢なユニバーサルアタックを構築する可能性についても検討した。
論文 参考訳(メタデータ) (2020-08-26T19:27:27Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Adversarial vs behavioural-based defensive AI with joint, continual and
active learning: automated evaluation of robustness to deception, poisoning
and concept drift [62.997667081978825]
人工知能(AI)の最近の進歩は、サイバーセキュリティのための行動分析(UEBA)に新たな能力をもたらした。
本稿では、検出プロセスを改善し、人間の専門知識を効果的に活用することにより、この攻撃を効果的に軽減するソリューションを提案する。
論文 参考訳(メタデータ) (2020-01-13T13:54:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。