論文の概要: Computational Electromagnetics Meets Spin Qubits: Controlling Noise Effects in Quantum Sensing and Computing
- arxiv url: http://arxiv.org/abs/2405.01830v2
- Date: Tue, 17 Sep 2024 06:11:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-18 22:10:43.465648
- Title: Computational Electromagnetics Meets Spin Qubits: Controlling Noise Effects in Quantum Sensing and Computing
- Title(参考訳): スピン量子ビットに遭遇する計算電磁:量子センシングと計算におけるノイズ効果の制御
- Authors: Wenbo Sun, Sathwik Bharadwaj, Runwei Zhou, Dan Jiao, Zubin Jacob,
- Abstract要約: 低周波磁気ゆらぎノイズを制御するための量子計算電磁界フレームワークを提案する。
我々のフレームワークは、スピン量子ビット量子デバイスへの計算電磁法の応用を拡張している。
- 参考スコア(独自算出の注目度): 7.3485958640380025
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solid-state spin qubits have emerged as promising platforms for quantum information. Despite extensive efforts in controlling noise in spin qubit quantum applications, one important but less controlled noise source is near-field electromagnetic fluctuations. Low-frequency (MHz and GHz) electromagnetic fluctuations are significantly enhanced near lossy material components in quantum applications, including metallic/superconducting gates necessary for controlling spin qubits in quantum computing devices and materials/nanostructures to be probed in quantum sensing. Although controlling this low-frequency electromagnetic fluctuation noise is crucial for improving the performance of quantum devices, current efforts are hindered by computational challenges. In this paper, we leverage advanced computational electromagnetics techniques, especially fast and accurate volume integral equation based solvers, to overcome the computational obstacle. We introduce a quantum computational electromagnetics framework to control low-frequency magnetic fluctuation noise and enhance spin qubit device performance. Our framework extends the application of computational electromagnetics to spin qubit quantum devices. Furthermore, we demonstrate the application of our framework in realistic quantum devices. Our work paves the way for device engineering to control magnetic fluctuations and improve the performance of spin qubit quantum sensing and computing.
- Abstract(参考訳): 固体スピン量子ビットは量子情報のための有望なプラットフォームとして出現している。
スピン量子ビット量子応用におけるノイズ制御の広範な取り組みにもかかわらず、重要なが制御の少ないノイズ源の1つは、近接場電磁ゆらぎである。
低周波(MHzとGHz)の電磁ゆらぎは、量子コンピューティングデバイスでスピン量子ビットを制御するのに必要な金属/超伝導ゲートや、量子センシングで探る材料/ナノ構造など、量子アプリケーションにおける損失のある材料コンポーネントの近くで著しく強化されている。
量子デバイスの性能向上には、この低周波電磁ゆらぎノイズの制御が不可欠であるが、現在の取り組みは計算上の課題によって妨げられている。
本稿では,特に高速かつ高精度な体積積分方程式に基づく解法を応用して計算障害を克服する。
我々は、低周波磁気ゆらぎノイズを制御し、スピン量子ビットデバイスの性能を向上させるための量子計算電磁界フレームワークを導入する。
我々のフレームワークは、スピン量子ビット量子デバイスへの計算電磁法の応用を拡張している。
さらに,現実的な量子デバイスへの我々のフレームワークの適用を実演する。
我々の研究は、デバイス工学が磁気ゆらぎを制御し、スピン量子ビット量子センシングとコンピューティングの性能を向上させる方法である。
関連論文リスト
- The curse of random quantum data [62.24825255497622]
量子データのランドスケープにおける量子機械学習の性能を定量化する。
量子機械学習におけるトレーニング効率と一般化能力は、量子ビットの増加に伴い指数関数的に抑制される。
この結果は量子カーネル法と量子ニューラルネットワークの広帯域限界の両方に適用できる。
論文 参考訳(メタデータ) (2024-08-19T12:18:07Z) - Understanding and mitigating noise in molecular quantum linear response for spectroscopic properties on quantum computers [0.0]
本稿では、シミュレーションされたフォールトトレラント量子コンピュータの分光特性を求める量子線形応答理論について述べる。
この研究は、量子アルゴリズムにおけるノイズの起源を分析し予測するための新しいメトリクスを導入している。
パウリ省エネによる計測コストと騒音の低減効果を強調した。
論文 参考訳(メタデータ) (2024-08-17T23:46:17Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
一般化誤差が小さい場合でも,量子カーネル法は予測能力に乏しい。
我々は、量子計算にノイズの多い量子カーネル法を用いるために重要な警告を提供する。
論文 参考訳(メタデータ) (2024-01-31T01:02:16Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
本稿では、超伝導量子ハードウェアにおける核効果場理論の文脈におけるフーリエモーメントの計算に焦点を当てる。
この研究は、制御反転ゲートを用いたアダマール試験にエコー検証と雑音再正規化を統合した。
ノイズモデルを用いて解析した結果,2桁のノイズ強度が顕著に低下することが判明した。
論文 参考訳(メタデータ) (2024-01-23T19:10:24Z) - Noise-assisted digital quantum simulation of open systems [1.3124513975412255]
本稿では,オープン量子システムのシミュレーションに必要な計算資源を削減するために,量子デバイス固有のノイズを利用する新しい手法を提案する。
具体的には、量子回路におけるデコヒーレンス率を選択的に向上または低減し、開系力学の所望のシミュレーションを実現する。
論文 参考訳(メタデータ) (2023-02-28T14:21:43Z) - Taking advantage of noise in quantum reservoir computing [0.0]
量子雑音は量子貯水池計算の性能向上に有効であることを示す。
我々の結果は量子デバイスの基礎となる物理的なメカニズムに新たな光を当てた。
論文 参考訳(メタデータ) (2023-01-17T11:22:02Z) - All-Optical Nuclear Quantum Sensing using Nitrogen-Vacancy Centers in
Diamond [52.77024349608834]
マイクロ波または高周波駆動は、量子センサーの小型化、エネルギー効率、非侵襲性を著しく制限する。
我々は、コヒーレント量子センシングに対する純粋に光学的アプローチを示すことによって、この制限を克服する。
この結果から, 磁気学やジャイロスコープの応用において, 量子センサの小型化が期待できる。
論文 参考訳(メタデータ) (2022-12-14T08:34:11Z) - Quantum Control of Spin Qubits Using Nanomagnets [0.09423257767158633]
ナノスケール磁気の電圧制御を用いたスピン量子ビットに対処する新しい手法を提案する。
ナノマグネットの電界駆動の周波数をナノスケールの体積に制限されたスピンのラーモア周波数に調整することにより、フォールトトレラント量子コンピューティングに近づく忠実度を持つ単一量子ビット量子ゲートを実現することができることを示す。
論文 参考訳(メタデータ) (2022-03-31T00:01:02Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
小型電子フォノン系のゲートベース量子シミュレーションにおける絶対的資源コストについて考察する。
我々は、弱い電子-フォノン結合と強い電子-フォノン結合の両方のためのIBM量子ハードウェアの実験を行う。
デバイスノイズは大きいが、近似回路再コンパイルを用いることで、正確な対角化に匹敵する電流量子コンピュータ上で電子フォノンダイナミクスを得る。
論文 参考訳(メタデータ) (2022-02-16T19:00:00Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
我々はQuTiPの量子情報処理パッケージであるqutip-qipに新しいツールを導入する。
これらのツールはパルスレベルで量子回路をシミュレートし、QuTiPの量子力学解法と制御最適化機能を活用する。
シミュレーションプロセッサ上で量子回路がどのようにコンパイルされ、制御パルスがターゲットハミルトニアンに作用するかを示す。
論文 参考訳(メタデータ) (2021-05-20T17:06:52Z) - Squeezing Microwaves by Magnetostriction [7.972753752250943]
空洞磁気力学におけるフェライトの磁歪相互作用は、電磁場の量子ノイズを低減するためにどのように用いられるかを示す。
我々の研究は、電磁場の圧縮真空状態を生成するための、新しく実践可能なアプローチを提供する。
論文 参考訳(メタデータ) (2021-01-07T23:32:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。