論文の概要: Exploring Combinatorial Problem Solving with Large Language Models: A Case Study on the Travelling Salesman Problem Using GPT-3.5 Turbo
- arxiv url: http://arxiv.org/abs/2405.01997v1
- Date: Fri, 3 May 2024 10:54:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-06 13:15:51.303201
- Title: Exploring Combinatorial Problem Solving with Large Language Models: A Case Study on the Travelling Salesman Problem Using GPT-3.5 Turbo
- Title(参考訳): 大規模言語モデルを用いた組合せ問題探索: GPT-3.5ターボを用いた旅行セールスマン問題の事例研究
- Authors: Mahmoud Masoud, Ahmed Abdelhay, Mohammed Elhenawy,
- Abstract要約: 旅行セールスマン問題(TSP)の解決に向けた大規模言語モデル(LLM)の可能性について検討する。
GPT-3.5 Turboを微調整して特定の問題サイズを解き、様々なインスタンスサイズを用いてテストした。
微調整されたモデルでは、トレーニングインスタンスと大きさが同じ問題に対して有望な性能を示し、より大きな問題に対してよく一般化された。
- 参考スコア(独自算出の注目度): 4.543552585804991
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) are deep learning models designed to generate text based on textual input. Although researchers have been developing these models for more complex tasks such as code generation and general reasoning, few efforts have explored how LLMs can be applied to combinatorial problems. In this research, we investigate the potential of LLMs to solve the Travelling Salesman Problem (TSP). Utilizing GPT-3.5 Turbo, we conducted experiments employing various approaches, including zero-shot in-context learning, few-shot in-context learning, and chain-of-thoughts (CoT). Consequently, we fine-tuned GPT-3.5 Turbo to solve a specific problem size and tested it using a set of various instance sizes. The fine-tuned models demonstrated promising performance on problems identical in size to the training instances and generalized well to larger problems. Furthermore, to improve the performance of the fine-tuned model without incurring additional training costs, we adopted a self-ensemble approach to improve the quality of the solutions.
- Abstract(参考訳): LLM(Large Language Models)は、テキスト入力に基づいてテキストを生成するために設計されたディープラーニングモデルである。
研究者は、コード生成や一般的な推論のようなより複雑なタスクのためにこれらのモデルを開発してきたが、LLMが組合せ問題にどのように適用できるかを探求する試みはほとんどない。
本研究では,旅行セールスマン問題 (TSP) の解決に向けた LLM の可能性を検討する。
GPT-3.5 Turboを用いて、ゼロショットインコンテキスト学習、少数ショットインコンテキスト学習、チェーン・オブ・シント(CoT)など、さまざまな手法を用いて実験を行った。
その結果, GPT-3.5 Turbo を微調整して特定の問題サイズを解くことができ, 様々なインスタンスサイズを用いてテストした。
微調整されたモデルでは、トレーニングインスタンスと大きさが同じ問題に対して有望な性能を示し、より大きな問題に対してよく一般化された。
さらに、追加のトレーニングコストを発生させることなく、微調整モデルの性能向上を図るため、ソリューションの品質向上のための自己組織化アプローチを採用した。
関連論文リスト
- What Makes Large Language Models Reason in (Multi-Turn) Code Generation? [28.614888506962988]
思考の連鎖は、大規模言語モデル(LLM)の出力を改善するための一般的な手段として確立されている。
本稿では,複数回にまたがる自動再プロンプトに焦点をあてて,幅広いプロンプト戦略の効果について検討する。
本研究は, 小型かつ大規模なサンプリング予算を持つ全モデルにおいて, 継続的に性能を向上させる戦略を明らかにする。
論文 参考訳(メタデータ) (2024-10-10T16:53:10Z) - Reasoning Paths Optimization: Learning to Reason and Explore From Diverse Paths [69.39559168050923]
本稿では,多様な経路から学習の推論と探索を可能にするReasoning Paths Optimization (RPO)を紹介する。
提案手法は,各推論ステップにおいて好意的な分岐を奨励し,好ましくない分岐を罰し,モデル全体の問題解決性能を高める。
我々は,数語問題や理科ベースの試験問題など,多段階の推論タスクに焦点をあてる。
論文 参考訳(メタデータ) (2024-10-07T06:37:25Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - Benchmarking Large Language Models for Math Reasoning Tasks [12.91916443702145]
我々は、4つの強力な基礎モデル上の5つの広く使われている数学的データセットの数学的問題解決のための、最先端の文脈内学習アルゴリズムを7つ比較した。
以上の結果から, GPT-4o や LLaMA 3-70B のような大規模基盤モデルでは, 具体的なプロンプト戦略とは独立に数学的推論を解くことが可能であることが示唆された。
将来の研究で追加モデルの統合をサポートするために、ベンチマークコードをオープンソースにしています。
論文 参考訳(メタデータ) (2024-08-20T13:34:17Z) - Navigating the Labyrinth: Evaluating and Enhancing LLMs' Ability to Reason About Search Problems [59.72548591120689]
我々は,11種類の検索問題を含む新しいベンチマークであるSearchBenchを紹介する。
もっとも先進的なLCMでさえ、これらの問題をエンドツーエンドのテキストで解決することができないことを示す。
LLMにその問題を解決するコードを生成するように指示することは助けになるが、GPT4のパフォーマンスは11.7%向上した。
論文 参考訳(メタデータ) (2024-06-18T00:44:58Z) - Improving the Capabilities of Large Language Model Based Marketing Analytics Copilots With Semantic Search And Fine-Tuning [0.9787137564521711]
本稿では, 意味探索, プロンプトエンジニアリング, 微調整を組み合わせることで, LLMのタスクを正確に実行する能力を大幅に向上させることができることを示す。
GPT-4のようなプロプライエタリなモデルと、Llama-2-70bのようなオープンソースのモデル、および様々な埋め込み方法を比較します。
論文 参考訳(メタデータ) (2024-04-16T03:39:16Z) - Enhancing the General Agent Capabilities of Low-Parameter LLMs through Tuning and Multi-Branch Reasoning [56.82041895921434]
オープンソースの事前訓練された大規模言語モデル(LLM)は、強力な言語理解と生成能力を示す。
現実世界の複雑な問題に対処するエージェントとして使用される場合、ChatGPTやGPT-4のような大型の商用モデルに比べてパフォーマンスははるかに劣る。
論文 参考訳(メタデータ) (2024-03-29T03:48:12Z) - Limits of Transformer Language Models on Learning to Compose Algorithms [77.2443883991608]
我々は,LLaMAモデルのトレーニングと,複数の個別サブタスクの合成学習を必要とする4つのタスクにおけるGPT-4とGeminiの促進について検討した。
その結果,現在最先端のTransformer言語モデルにおける構成学習は,非常に非効率なサンプルであることが示唆された。
論文 参考訳(メタデータ) (2024-02-08T16:23:29Z) - MT-Eval: A Multi-Turn Capabilities Evaluation Benchmark for Large
Language Models [70.92847554971065]
MT-Evalは,マルチターン対話能力を評価するための総合的なベンチマークである。
人間のLLM会話を解析することにより,インタラクションパターンを,再現,拡張,洗練,フォローアップの4つのタイプに分類する。
11個の有名なLCMを評価したところ、クローズドソースモデルは一般的にオープンソースモデルを上回るが、特定のタスクにおいて特定のオープンソースモデルの方がGPT-3.5-Turboを上回っていることがわかった。
論文 参考訳(メタデータ) (2024-01-30T04:50:28Z) - Self-Labeling the Job Shop Scheduling Problem [15.723699332053558]
生成モデルは複数の解をサンプリングし、問題の目的に応じて最良の解を擬似ラベルとして使用することにより訓練可能であることを示す。
旅行セールスマン問題に適用することで,様々なパラメータに対するSLIMのロバスト性とその一般性を証明する。
論文 参考訳(メタデータ) (2024-01-22T11:08:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。