論文の概要: Few-sample Variational Inference of Bayesian Neural Networks with Arbitrary Nonlinearities
- arxiv url: http://arxiv.org/abs/2405.02063v5
- Date: Mon, 21 Oct 2024 11:26:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-22 13:11:43.190462
- Title: Few-sample Variational Inference of Bayesian Neural Networks with Arbitrary Nonlinearities
- Title(参考訳): 任意非線形性を持つベイズニューラルネットワークのわずかなサンプル変動推定
- Authors: David J. Schodt,
- Abstract要約: 3つの決定論的サンプルだけで任意の非線形性を通して統計モーメントを伝播する単純かつ効果的な手法を実証する。
そこで本研究では,BNNの出力ノードに物理インフォームド事前情報を注入する非線形アクティベーション関数を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Bayesian Neural Networks (BNNs) extend traditional neural networks to provide uncertainties associated with their outputs. On the forward pass through a BNN, predictions (and their uncertainties) are made either by Monte Carlo sampling network weights from the learned posterior or by analytically propagating statistical moments through the network. Though flexible, Monte Carlo sampling is computationally expensive and can be infeasible or impractical under resource constraints or for large networks. While moment propagation can ameliorate the computational costs of BNN inference, it can be difficult or impossible for networks with arbitrary nonlinearities, thereby restricting the possible set of network layers permitted with such a scheme. In this work, we demonstrate a simple yet effective approach for propagating statistical moments through arbitrary nonlinearities with only 3 deterministic samples, enabling few-sample variational inference of BNNs without restricting the set of network layers used. Furthermore, we leverage this approach to demonstrate a novel nonlinear activation function that we use to inject physics-informed prior information into output nodes of a BNN.
- Abstract(参考訳): ベイズニューラルネットワーク(BNN)は、従来のニューラルネットワークを拡張して、出力に関連する不確実性を提供する。
BNNの前方通過では、モンテカルロが学習後部のネットワーク重みをサンプリングするか、あるいはネットワークを介して統計モーメントを解析的に伝播することによって予測(とその不確実性)を行う。
フレキシブルではあるが、モンテカルロサンプリングは計算コストが高く、資源制約や大規模ネットワークでは実現不可能または実用的ではない。
モーメント伝搬はBNN推論の計算コストを改善することができるが、任意の非線形性を持つネットワークでは困難あるいは不可能であり、そのようなスキームで許容されるネットワーク層のセットを制限することができる。
本研究は, 任意の非線形性による統計モーメントの伝播を, 3つの決定論的サンプルのみを用いて簡易かつ効果的に行うことを示し, ネットワーク層に制限を加えることなく, 少数のBNNの変分推定を可能にする。
さらに,本手法を用いて,BNNの出力ノードに物理インフォームド事前情報を注入する非線形アクティベーション機能を示す。
関連論文リスト
- An Analytic Solution to Covariance Propagation in Neural Networks [10.013553984400488]
本稿では,ニューラルネットワークの入出力分布を正確に特徴付けるために,サンプルフリーモーメント伝搬法を提案する。
この手法の鍵となる有効性は、非線形活性化関数を通した確率変数の共分散に対する解析解である。
学習ニューラルネットワークの入力出力分布を分析し,ベイズニューラルネットワークを訓練する実験において,提案手法の適用性およびメリットを示す。
論文 参考訳(メタデータ) (2024-03-24T14:08:24Z) - A Framework for Variational Inference of Lightweight Bayesian Neural
Networks with Heteroscedastic Uncertainties [0.31457219084519006]
異種性失語症とてんかんのばらつきを学習したBNNパラメータのばらつきに埋め込むことができることを示す。
軽量BNNに適したサンプリング不要な変分推論のための比較的単純なフレームワークを提案する。
論文 参考訳(メタデータ) (2024-02-22T13:24:43Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - Variational Neural Networks [88.24021148516319]
本稿では,変分ニューラルネットワーク(VNN)と呼ばれるニューラルネットワークにおける不確実性推定手法を提案する。
VNNは、学習可能なサブレイヤで入力を変換することで、レイヤの出力分布のパラメータを生成する。
不確実性評価実験において、VNNはモンテカルロ・ドロップアウトやベイズ・バイ・バックプロパゲーション法よりも優れた不確実性が得られることを示す。
論文 参考訳(メタデータ) (2022-07-04T15:41:02Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Encoding the latent posterior of Bayesian Neural Networks for
uncertainty quantification [10.727102755903616]
我々は,複雑なコンピュータビジョンアーキテクチャに適した効率的な深部BNNを目指している。
可変オートエンコーダ(VAE)を利用して、各ネットワーク層におけるパラメータの相互作用と潜在分布を学習する。
我々のアプローチであるLatent-Posterior BNN(LP-BNN)は、最近のBatchEnsemble法と互換性があり、高い効率(トレーニングとテストの両方における計算とメモリ)のアンサンブルをもたらす。
論文 参考訳(メタデータ) (2020-12-04T19:50:09Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
勾配勾配降下法によりトレーニングされたニューラルネットワークが、トレーニング分布の支持の外で学んだことを外挿する方法について検討する。
グラフニューラルネットワーク(GNN)は、より複雑なタスクでいくつかの成功を収めている。
論文 参考訳(メタデータ) (2020-09-24T17:48:59Z) - Multi-Sample Online Learning for Probabilistic Spiking Neural Networks [43.8805663900608]
スパイキングニューラルネットワーク(SNN)は、推論と学習のための生物学的脳の効率の一部をキャプチャする。
本稿では,一般化予測最大化(GEM)に基づくオンライン学習ルールを提案する。
標準ニューロモルフィックデータセットにおける構造化された出力記憶と分類実験の結果,ログの類似性,精度,キャリブレーションの点で大きな改善が見られた。
論文 参考訳(メタデータ) (2020-07-23T10:03:58Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
リカレントニューラルネットワーク(RNN)は、シーケンシャルおよび時系列データのモデリングに有効である。
RNNにおける既存の不確実性定量化のアプローチは、主にベイズ法に基づいている。
a)モデルトレーニングに干渉せず、その精度を損なうことなく、(b)任意のRNNアーキテクチャに適用し、(c)推定不確かさ間隔に関する理論的カバレッジ保証を提供する。
論文 参考訳(メタデータ) (2020-06-20T22:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。