論文の概要: An Information Theoretic Perspective on Conformal Prediction
- arxiv url: http://arxiv.org/abs/2405.02140v2
- Date: Wed, 26 Jun 2024 14:58:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-27 18:35:32.248825
- Title: An Information Theoretic Perspective on Conformal Prediction
- Title(参考訳): コンフォーマル予測に関する情報理論の展望
- Authors: Alvaro H. C. Correia, Fabio Valerio Massoli, Christos Louizos, Arash Behboodi,
- Abstract要約: コンフォーマル予測(CP)は、ユーザが特定した確率で真の答えを含むことが保証される予測セットを構成する。
本研究では,情報理論を利用して共形予測と不確実性の概念を結びつける。
- 参考スコア(独自算出の注目度): 15.194199235970242
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conformal Prediction (CP) is a distribution-free uncertainty estimation framework that constructs prediction sets guaranteed to contain the true answer with a user-specified probability. Intuitively, the size of the prediction set encodes a general notion of uncertainty, with larger sets associated with higher degrees of uncertainty. In this work, we leverage information theory to connect conformal prediction to other notions of uncertainty. More precisely, we prove three different ways to upper bound the intrinsic uncertainty, as described by the conditional entropy of the target variable given the inputs, by combining CP with information theoretical inequalities. Moreover, we demonstrate two direct and useful applications of such connection between conformal prediction and information theory: (i) more principled and effective conformal training objectives that generalize previous approaches and enable end-to-end training of machine learning models from scratch, and (ii) a natural mechanism to incorporate side information into conformal prediction. We empirically validate both applications in centralized and federated learning settings, showing our theoretical results translate to lower inefficiency (average prediction set size) for popular CP methods.
- Abstract(参考訳): Conformal Prediction (CP) は、分布のない不確実性推定フレームワークであり、ユーザが特定した確率で真の答えを含むことが保証される予測セットを構築する。
直感的には、予測セットのサイズは不確実性の一般的な概念を符号化し、より大きな集合はより高い不確実性の度合いに関連付けられる。
本研究では,情報理論を利用して共形予測と不確実性の概念を結びつける。
より正確には、入力が与えられた対象変数の条件エントロピーによって説明されるように、本質的不確かさを上界する3つの異なる方法をCPと情報理論的不等式を組み合わせて証明する。
さらに、共形予測と情報理論の関連性について、2つの直接的かつ有用な応用を実証する。
(i)従来のアプローチを一般化し、スクラッチから機械学習モデルのエンドツーエンドトレーニングを可能にする、より原則的で効果的な整合トレーニング目標
(ii)側情報を共形予測に組み込む自然なメカニズム。
我々は,集中型およびフェデレーション型学習環境における両方の応用を実証的に検証し,その理論結果がCP手法の非効率性(平均予測セットサイズ)を低下させることを示す。
関連論文リスト
- Conformalized Link Prediction on Graph Neural Networks [8.807684750444626]
グラフニューラルネットワーク(GNN)は様々なタスクに優れていますが、高い領域でのその応用は信頼性の低い予測によって妨げられます。
本稿では,GNNに基づくリンク予測の統計的保証を伴う予測区間を構築するために,分布自由かつモデルに依存しない不確実性定量化手法を提案する。
論文 参考訳(メタデータ) (2024-06-26T21:17:37Z) - Robust Conformal Prediction Using Privileged Information [17.886554223172517]
本研究では,トレーニングデータの破損に対して堅牢な,保証されたカバレッジ率で予測セットを生成する手法を開発した。
我々のアプローチは、i.d仮定の下で有効となる予測セットを構築するための強力なフレームワークである共形予測に基づいている。
論文 参考訳(メタデータ) (2024-06-08T08:56:47Z) - Generalization and Informativeness of Conformal Prediction [36.407171992845456]
Con conformal prediction (CP) は任意のベース予測器をカバレッジ保証付きセット予測器に変換する。
CPは、予測セットがユーザ定義の許容範囲でターゲット量を含むことを認証するが、予測セットの平均サイズを制御できない。
基底予測器の一般化特性と結果のCP予測セットの情報性との間に理論的な関係が確立される。
導出上界は、CPセット予測器の平均サイズが、キャリブレーションデータの量、目標信頼性、ベース予測器の一般化性能に依存することを洞察する。
論文 参考訳(メタデータ) (2024-01-22T10:14:45Z) - Efficient Conformal Prediction under Data Heterogeneity [79.35418041861327]
コンフォーマル予測(CP)は不確実性定量化のための頑健な枠組みである。
非交換性に対処するための既存のアプローチは、最も単純な例を超えて計算不可能なメソッドにつながる。
この研究は、比較的一般的な非交換可能なデータ分布に対して証明可能な信頼セットを生成する、CPに新しい効率的なアプローチを導入する。
論文 参考訳(メタデータ) (2023-12-25T20:02:51Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - Model-free generalized fiducial inference [0.0]
本稿では,不正確な確率的予測推定のためのモデルフリー統計フレームワークの提案と開発を行う。
このフレームワークは、タイプ1エラーの有限サンプル制御を提供する予測セットの形式での不確実性定量化を促進する。
モデルフリー不正確なフレームワークに対する正確な確率近似の理論的および経験的特性について考察する。
論文 参考訳(メタデータ) (2023-07-24T01:58:48Z) - Quantifying Deep Learning Model Uncertainty in Conformal Prediction [1.4685355149711297]
コンフォーマル予測(Conformal Prediction)は、モデルの不確実性を表現するための有望なフレームワークである。
本稿では,最先端CP手法とその理論的基礎について考察する。
論文 参考訳(メタデータ) (2023-06-01T16:37:50Z) - Federated Conformal Predictors for Distributed Uncertainty
Quantification [83.50609351513886]
コンフォーマル予測は、機械学習において厳密な不確実性定量化を提供するための一般的なパラダイムとして現れつつある。
本稿では,共形予測を連邦学習環境に拡張する。
本稿では、FL設定に適した部分交換可能性の弱い概念を提案し、それをフェデレート・コンフォーマル予測フレームワークの開発に利用する。
論文 参考訳(メタデータ) (2023-05-27T19:57:27Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。