Towards a Formal Creativity Theory: Preliminary results in Novelty and Transformativeness
- URL: http://arxiv.org/abs/2405.02148v1
- Date: Fri, 3 May 2024 14:53:46 GMT
- Title: Towards a Formal Creativity Theory: Preliminary results in Novelty and Transformativeness
- Authors: Luís Espírito Santo, Geraint Wiggins, Amílcar Cardoso,
- Abstract summary: This formalisation marks the beginning of a research branch we call Formal Creativity Theory.
We argue that while novelty is neither necessary nor sufficient for transformational creativity in general, when using an inspiring set, rather than a sequence of experiences, an agent actually requires novelty for transformational creativity to occur.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Formalizing creativity-related concepts has been a long-term goal of Computational Creativity. To the same end, we explore Formal Learning Theory in the context of creativity. We provide an introduction to the main concepts of this framework and a re-interpretation of terms commonly found in creativity discussions, proposing formal definitions for novelty and transformational creativity. This formalisation marks the beginning of a research branch we call Formal Creativity Theory, exploring how learning can be included as preparation for exploratory behaviour and how learning is a key part of transformational creative behaviour. By employing these definitions, we argue that, while novelty is neither necessary nor sufficient for transformational creativity in general, when using an inspiring set, rather than a sequence of experiences, an agent actually requires novelty for transformational creativity to occur.
Related papers
- Neurosymbolic Graph Enrichment for Grounded World Models [47.92947508449361]
We present a novel approach to enhance and exploit LLM reactive capability to address complex problems.
We create a multimodal, knowledge-augmented formal representation of meaning that combines the strengths of large language models with structured semantic representations.
By bridging the gap between unstructured language models and formal semantic structures, our method opens new avenues for tackling intricate problems in natural language understanding and reasoning.
arXiv Detail & Related papers (2024-11-19T17:23:55Z) - Provably Transformers Harness Multi-Concept Word Semantics for Efficient In-Context Learning [53.685764040547625]
Transformer-based large language models (LLMs) have displayed remarkable creative prowess and emergence capabilities.
This work provides a fine mathematical analysis to show how transformers leverage the multi-concept semantics of words to enable powerful ICL and excellent out-of-distribution ICL abilities.
arXiv Detail & Related papers (2024-11-04T15:54:32Z) - Innovative Thinking, Infinite Humor: Humor Research of Large Language Models through Structured Thought Leaps [34.35304020094762]
Humor is a culturally nuanced aspect of human language that presents challenges for understanding and generation.
In this paper, we propose a systematic way of thinking about generating humor and based on it, we built Creative Leap of Structured Thought frame.
arXiv Detail & Related papers (2024-10-14T10:50:16Z) - Creativity and Markov Decision Processes [0.20482269513546453]
We identify formal mappings between Boden's process theory of creativity and Markov Decision Processes (MDPs)
We study three out of eleven mappings in detail to understand which types of creative processes, opportunities foraberrations, and threats to creativity (uninspiration) could be observed in an MDP.
We conclude by discussing quality criteria for the selection of such mappings for future work and applications.
arXiv Detail & Related papers (2024-05-23T18:16:42Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - OC-NMN: Object-centric Compositional Neural Module Network for
Generative Visual Analogical Reasoning [49.12350554270196]
We show how modularity can be leveraged to derive a compositional data augmentation framework inspired by imagination.
Our method, denoted Object-centric Compositional Neural Module Network (OC-NMN), decomposes visual generative reasoning tasks into a series of primitives applied to objects without using a domain-specific language.
arXiv Detail & Related papers (2023-10-28T20:12:58Z) - ConceptLab: Creative Concept Generation using VLM-Guided Diffusion Prior
Constraints [56.824187892204314]
We present the task of creative text-to-image generation, where we seek to generate new members of a broad category.
We show that the creative generation problem can be formulated as an optimization process over the output space of the diffusion prior.
We incorporate a question-answering Vision-Language Model (VLM) that adaptively adds new constraints to the optimization problem, encouraging the model to discover increasingly more unique creations.
arXiv Detail & Related papers (2023-08-03T17:04:41Z) - Automatic Creativity Measurement in Scratch Programs Across Modalities [6.242018846706069]
We make the journey fromdefining a formal measure of creativity that is efficientlycomputable to applying the measure in a practical domain.
We adapted the general measure for projects in the popular visual programming language Scratch.
We designed a machine learning model for predicting the creativity of Scratch projects, trained and evaluated on human expert creativity assessments.
arXiv Detail & Related papers (2022-11-07T10:43:36Z) - Creativity of Deep Learning: Conceptualization and Assessment [1.5738019181349994]
We use insights from computational creativity to conceptualize and assess current applications of generative deep learning in creative domains.
We highlight parallels between current systems and different models of human creativity as well as their shortcomings.
arXiv Detail & Related papers (2020-12-03T21:44:07Z) - Explaining Creative Artifacts [69.86890599471202]
We develop an inverse problem formulation to deconstruct the products of and compositional creativity into associative chains.
In particular, our formulation is structured as solving a traveling salesman problem through a knowledge graph of associative elements.
arXiv Detail & Related papers (2020-10-14T14:32:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.