Innovative Thinking, Infinite Humor: Humor Research of Large Language Models through Structured Thought Leaps
- URL: http://arxiv.org/abs/2410.10370v1
- Date: Mon, 14 Oct 2024 10:50:16 GMT
- Title: Innovative Thinking, Infinite Humor: Humor Research of Large Language Models through Structured Thought Leaps
- Authors: Han Wang, Yilin Zhao, Dian Li, Xiaohan Wang, Gang Liu, Xuguang Lan, Hui Wang,
- Abstract summary: Humor is a culturally nuanced aspect of human language that presents challenges for understanding and generation.
In this paper, we propose a systematic way of thinking about generating humor and based on it, we built Creative Leap of Structured Thought frame.
- Score: 34.35304020094762
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Humor is a culturally nuanced aspect of human language that presents challenges for understanding and generation, requiring participants to possess good creativity and strong associative thinking. Similar to reasoning tasks like solving math problems, humor generation requires continuous reflection and revision to foster creative thinking, rather than relying on a sudden flash of inspiration like Creative Leap-of-Thought (CLoT) paradigm. Although CLoT can realize the ability of remote association generation, this paradigm fails to generate humor content. Therefore, in this paper, we propose a systematic way of thinking about generating humor and based on it, we built Creative Leap of Structured Thought (CLoST) frame. First, a reward model is necessary achieve the purpose of being able to correct errors, since there is currently no expert model of humor and a usable rule to determine whether a piece of content is humorous. Judgement-oriented instructions are designed to improve the capability of a model, and we also propose an open-domain instruction evolutionary method to fully unleash the potential. Then, through reinforcement learning, the model learns to hone its rationales of the thought chain and refine the strategies it uses. Thus, it learns to recognize and correct its mistakes, and finally generate the most humorous and creative answer. These findings deepen our understanding of the creative capabilities of LLMs and provide ways to enhance LLMs' creative abilities for cross-domain innovative applications.
Related papers
- RARE: Retrieval-Augmented Reasoning Modeling [41.24577920467858]
Domain-specific intelligence demands specialized knowledge and sophisticated reasoning for problem-solving.
We propose Retrieval-Augmented Reasoning Modeling (RARE), a novel paradigm that decouples knowledge storage from reasoning optimization.
RARE externalizes domain knowledge to retrievable sources and internalizes domain-specific reasoning patterns during training.
arXiv Detail & Related papers (2025-03-30T16:49:44Z) - Back Attention: Understanding and Enhancing Multi-Hop Reasoning in Large Language Models [51.53835083483751]
We investigate how large language models perform latent multi-hop reasoning in prompts like "Wolfgang Amadeus Mozart's mother's spouse is"
We find that failures often stem from the relation attribute extraction stage, where conflicting logits reduce prediction accuracy.
We propose back attention, a novel mechanism that enables lower layers to leverage higher-layer hidden states from different positions during attention computation.
arXiv Detail & Related papers (2025-02-15T15:36:42Z) - TinyThinker: Distilling Reasoning through Coarse-to-Fine Knowledge Internalization with Self-Reflection [2.379928855453728]
Large Language Models exhibit impressive reasoning capabilities across diverse tasks.
Efforts to distill these capabilities into smaller models through generated reasoning data may lead to superficial imitation of reasoning process.
We propose TinyThinker, a framework introducing two novel approaches.
arXiv Detail & Related papers (2024-12-11T02:05:42Z) - Towards Interpreting Language Models: A Case Study in Multi-Hop Reasoning [0.0]
Language models (LMs) struggle to perform multi-hop reasoning consistently.
We propose an approach to pinpoint and rectify multi-hop reasoning failures through targeted memory injections on LM attention heads.
arXiv Detail & Related papers (2024-11-06T16:30:26Z) - A Framework for Collaborating a Large Language Model Tool in Brainstorming for Triggering Creative Thoughts [2.709166684084394]
This study proposes a framework called GPS, which employs goals, prompts, and strategies to guide designers to systematically work with an LLM tool for improving the creativity of ideas generated during brainstorming.
Our framework, tested through a design example and a case study, demonstrates its effectiveness in stimulating creativity and its seamless LLM tool integration into design practices.
arXiv Detail & Related papers (2024-10-10T13:39:27Z) - Initial Development and Evaluation of the Creative Artificial Intelligence through Recurring Developments and Determinations (CAIRDD) System [0.0]
Large language models (LLMs) provide a facsimile of creativity and the appearance of sentience, while not actually being either creative or sentient.
This paper proposes a technique for enhancing LLM output creativity via an iterative process of concept injection and refinement.
arXiv Detail & Related papers (2024-09-03T21:04:07Z) - Benchmarking Language Model Creativity: A Case Study on Code Generation [17.56712029335294]
creativity consists of at least two key characteristics: emphconvergent thinking (purposefulness to achieve a given goal) and emphdivergent thinking (adaptability to new environments or constraints) citeprunco 2003critical
We introduce a framework for quantifying LLM creativity that incorporates the two characteristics.
This is achieved by (1) Denial Prompting pushes LLMs to come up with more creative solutions to a given problem by incrementally imposing new constraints on the previous solution, and (2) defining and computing the NeoGauge metric which examines both convergent and divergent thinking in the generated creative
arXiv Detail & Related papers (2024-07-12T05:55:22Z) - Divergent Creativity in Humans and Large Language Models [37.67363469600804]
The recent surge in the capabilities of Large Language Models has led to claims that they are approaching a level of creativity akin to human capabilities.
We leverage recent advances in creativity science to build a framework for in-depth analysis of divergent creativity in both state-of-the-art LLMs and a substantial dataset of 100,000 humans.
arXiv Detail & Related papers (2024-05-13T22:37:52Z) - Enhancing Creativity in Large Language Models through Associative Thinking Strategies [9.09055730592338]
Associative thinking strategies have been found to help humans boost creativity.
We investigate whether prompting Large Language Models to connect disparate concepts can augment their creative outputs.
Our findings show that leveraging associative thinking techniques can significantly improve the originality of vGPT-4's responses.
arXiv Detail & Related papers (2024-05-09T16:42:29Z) - Exploring Chinese Humor Generation: A Study on Two-Part Allegorical Sayings [0.76146285961466]
This paper investigates the capability of state-of-the-art language models to comprehend and generate Chinese humor.
We employ two prominent training methods: fine-tuning a medium-sized language model and prompting a large one.
Human-annotated results show that these models can generate humorous allegorical sayings, with prompting proving to be a practical and effective method.
arXiv Detail & Related papers (2024-03-16T02:58:57Z) - Can AI Be as Creative as Humans? [84.43873277557852]
We prove in theory that AI can be as creative as humans under the condition that it can properly fit the data generated by human creators.
The debate on AI's creativity is reduced into the question of its ability to fit a sufficient amount of data.
arXiv Detail & Related papers (2024-01-03T08:49:12Z) - Let's Think Outside the Box: Exploring Leap-of-Thought in Large Language Models with Creative Humor Generation [96.0573187419543]
Chain-of-Thought (CoT) guides large language models to reason step-by-step, and can motivate their logical reasoning ability.
We explore the Leap-of-Thought (LoT) abilities within large language models (LLMs)
LoT is a non-sequential, creative paradigm involving strong associations and knowledge leaps.
arXiv Detail & Related papers (2023-12-05T02:41:57Z) - Think Twice: Perspective-Taking Improves Large Language Models'
Theory-of-Mind Capabilities [63.90227161974381]
SimToM is a novel prompting framework inspired by Simulation Theory's notion of perspective-taking.
Our approach, which requires no additional training and minimal prompt-tuning, shows substantial improvement over existing methods.
arXiv Detail & Related papers (2023-11-16T22:49:27Z) - Democratizing Reasoning Ability: Tailored Learning from Large Language
Model [97.4921006089966]
We propose a tailored learning approach to distill such reasoning ability to smaller LMs.
We exploit the potential of LLM as a reasoning teacher by building an interactive multi-round learning paradigm.
To exploit the reasoning potential of the smaller LM, we propose self-reflection learning to motivate the student to learn from self-made mistakes.
arXiv Detail & Related papers (2023-10-20T07:50:10Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - ConceptLab: Creative Concept Generation using VLM-Guided Diffusion Prior
Constraints [56.824187892204314]
We present the task of creative text-to-image generation, where we seek to generate new members of a broad category.
We show that the creative generation problem can be formulated as an optimization process over the output space of the diffusion prior.
We incorporate a question-answering Vision-Language Model (VLM) that adaptively adds new constraints to the optimization problem, encouraging the model to discover increasingly more unique creations.
arXiv Detail & Related papers (2023-08-03T17:04:41Z) - Large Language Models are In-Context Semantic Reasoners rather than
Symbolic Reasoners [75.85554779782048]
Large Language Models (LLMs) have excited the natural language and machine learning community over recent years.
Despite of numerous successful applications, the underlying mechanism of such in-context capabilities still remains unclear.
In this work, we hypothesize that the learned textitsemantics of language tokens do the most heavy lifting during the reasoning process.
arXiv Detail & Related papers (2023-05-24T07:33:34Z) - Language Generation with Multi-Hop Reasoning on Commonsense Knowledge
Graph [124.45799297285083]
We argue that exploiting both the structural and semantic information of the knowledge graph facilitates commonsense-aware text generation.
We propose Generation with Multi-Hop Reasoning Flow (GRF) that enables pre-trained models with dynamic multi-hop reasoning on multi-relational paths extracted from the external commonsense knowledge graph.
arXiv Detail & Related papers (2020-09-24T13:55:32Z) - Learning with AMIGo: Adversarially Motivated Intrinsic Goals [63.680207855344875]
AMIGo is a goal-generating teacher that proposes Adversarially Motivated Intrinsic Goals.
We show that our method generates a natural curriculum of self-proposed goals which ultimately allows the agent to solve challenging procedurally-generated tasks.
arXiv Detail & Related papers (2020-06-22T10:22:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.