論文の概要: Secure and Efficient General Matrix Multiplication On Cloud Using Homomorphic Encryption
- arxiv url: http://arxiv.org/abs/2405.02238v2
- Date: Wed, 22 May 2024 19:41:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 05:20:55.740479
- Title: Secure and Efficient General Matrix Multiplication On Cloud Using Homomorphic Encryption
- Title(参考訳): 均一暗号を用いたクラウド上の安全かつ効率的な一般行列乗算
- Authors: Yang Gao, Gang Quan, Soamar Homsi, Wujie Wen, Liqiang Wang,
- Abstract要約: ホモモルフィック暗号化(HE)は、機密性の高いアプリケーションのプライバシーとセキュリティを確保する効果的なツールとして登場した。
HEベースの計算を採用する上での大きな障害のひとつは、計算コストの過大さである。
- 参考スコア(独自算出の注目度): 21.253885519048016
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the cloud enormous technical and financial advantages, security and privacy have always been the primary concern for adopting cloud computing facility, especially for government agencies and commercial sectors with high-security requirements. Homomorphic Encryption (HE) has recently emerged as an effective tool in assuring privacy and security for sensitive applications by allowing computing on encrypted data. One major obstacle to employing HE-based computation, however, is its excessive computational cost, which is multiple magnitudes higher than its counterpart based on the plaintext. In this paper, we study the problem of how to reduce the HE-based computational cost for general Matrix Multiplication (MM), i.e., a fundamental building block for numerous practical applications, by taking advantage of the Single Instruction Multiple Data (SIMD) operation supported by HE schemes. Specifically, we develop a novel element-wise algorithm for general matrix multiplication, based on which we propose two HE-based General Matrix Multiplication (HEGMM) algorithms to reduce the HE computation cost. Our experimental results show that our algorithms can significantly outperform the state-of-the-art approaches of HE-based matrix multiplication.
- Abstract(参考訳): クラウドの技術的および経済的アドバンテージにもかかわらず、セキュリティとプライバシはクラウドコンピューティング機能を採用する上で、特に高いセキュリティ要件を持つ政府機関や商業部門において、常に主要な関心事となっている。
ホモモルフィック暗号化(HE)は、最近、暗号化されたデータ上でのコンピューティングを可能にすることで、機密性の高いアプリケーションのプライバシとセキュリティを確保する効果的なツールとして登場した。
しかし、HEベースの計算を採用する上での大きな障害は計算コストの過大さである。
本稿では,HE方式がサポートする単一命令多重データ(SIMD)演算を活用することで,汎用的行列乗法(MM)の基本構築ブロックであるHEベースの計算コストの削減方法について議論する。
具体的には、一般化行列乗算のための新しい要素ワイドアルゴリズムを開発し、HEに基づく2つの一般行列乗算(HEGMM)アルゴリズムを提案し、HE計算コストを削減した。
実験の結果,我々のアルゴリズムはHEベースの行列乗算の最先端手法よりも大幅に優れていることがわかった。
関連論文リスト
- A Note on Efficient Privacy-Preserving Similarity Search for Encrypted Vectors [1.3824176915623292]
従来のベクトル類似性探索手法では、完全同型暗号(FHE)を用いて復号化せずに計算が可能であった。
この研究は、より効率的な代替手段を探究する: プライバシー保護類似性検索に加法的同型暗号(AHE)を使用する。
本稿では,AHE で暗号化された類似性探索のアルゴリズムを提案し,そのエラーの増大とセキュリティへの影響を解析する。
論文 参考訳(メタデータ) (2025-02-20T06:07:04Z) - Sublinear-Overhead Secure Linear Algebra on a Dishonest Server [3.8105803634609483]
我々は、高速、遠隔、およびデータ公開線形代数に対する自然効率性とセキュリティデシラタを述べる。
我々は、満足なアルゴリズムを暗示する行列とベクトル族の存在を予想し、共通暗号仮定に基づくそのようなアルゴリズムを提供する。
論文 参考訳(メタデータ) (2025-02-18T17:05:17Z) - Cryptanalysis via Machine Learning Based Information Theoretic Metrics [58.96805474751668]
本稿では,機械学習アルゴリズムの新たな2つの応用法を提案する。
これらのアルゴリズムは、監査設定で容易に適用でき、暗号システムの堅牢性を評価することができる。
本稿では,DES,RSA,AES ECBなど,IND-CPAの安全でない暗号化スキームを高精度に識別する。
論文 参考訳(メタデータ) (2025-01-25T04:53:36Z) - Learning for Cross-Layer Resource Allocation in MEC-Aided Cell-Free Networks [71.30914500714262]
移動エッジコンピューティング(MEC)を援用したセルフリーネットワーク上でのクロスレイヤリソース割り当ては、データレートを促進するために、送信およびコンピューティングリソースを十分に活用することができる。
深層学習の観点からMEC支援セルフリーネットワークのサブキャリア配置とビームフォーミング最適化について検討した。
論文 参考訳(メタデータ) (2024-12-21T10:18:55Z) - Evaluating the Potential of In-Memory Processing to Accelerate Homomorphic Encryption [1.5707609236065612]
ホモモルフィック暗号化(HE)は、復号化を必要とせずに計算を可能にする。
基礎となる暗号操作に関連する高い計算とメモリオーバーヘッドは、HEベースのソリューションの実用性を妨げている。
処理インメモリ(PIM)は、計算をデータに近づけることで、プロセッサメモリのデータ移動によるオーバーヘッドを低減することにより、この問題に対して有望な解決策を提供する。
論文 参考訳(メタデータ) (2024-12-12T10:28:58Z) - Encrypted system identification as-a-service via reliable encrypted matrix inversion [0.0]
暗号化された計算は、多数のアプリケーションドメインにわたる有望な道を開く。
特に、算術的同型暗号化はクラウドベースの計算サービスに自然に適合する。
本稿では,少なくとも2乗問題に対する信頼性の高い暗号化ソリューションにより,暗号化されたシステム識別サービスを提案する。
論文 参考訳(メタデータ) (2024-10-27T20:00:04Z) - A General Framework for Learning from Weak Supervision [93.89870459388185]
本稿では、新しいアルゴリズムを用いて、弱監督(GLWS)から学習するための一般的な枠組みを紹介する。
GLWSの中心は期待最大化(EM)の定式化であり、様々な弱い監督源を順応的に収容している。
また,EM計算要求を大幅に単純化する高度なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-02-02T21:48:50Z) - SOCI^+: An Enhanced Toolkit for Secure OutsourcedComputation on Integers [50.608828039206365]
本稿では,SOCIの性能を大幅に向上させるSOCI+を提案する。
SOCI+は、暗号プリミティブとして、高速な暗号化と復号化を備えた(2, 2)ホールドのPaillier暗号システムを採用している。
実験の結果,SOCI+は計算効率が最大5.4倍,通信オーバヘッドが40%少ないことがわかった。
論文 参考訳(メタデータ) (2023-09-27T05:19:32Z) - CECILIA: Comprehensive Secure Machine Learning Framework [2.949446809950691]
複雑な操作をプライベートに行えるPPビルディングブロックを提供するセキュアな3パーティフレームワークであるCECILIAを提案する。
CECILIAには2つの新しい方法があり、これは秘密のグラム行列の逆二乗根と秘密の値のパワーに引き上げられた公的な基底の正確な指数関数である。
このフレームワークは、他のMLアルゴリズムと、さらなる計算をプライベートに計算可能にすることを約束している。
論文 参考訳(メタデータ) (2022-02-07T09:27:34Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
モバイルエッジコンピューティング(MEC)は、AIアプリケーションに自然なプラットフォームを提供します。
再構成可能なインテリジェントサーフェス(RIS)の助けを借りて、MECで機械学習タスクを実行するインフラストラクチャを提示します。
具体的には,モバイルユーザの送信パワー,基地局のビームフォーミングベクトル,risの位相シフト行列を共同で最適化することにより,参加ユーザの学習誤差を最小化する。
論文 参考訳(メタデータ) (2020-12-25T07:08:50Z) - Faster Secure Data Mining via Distributed Homomorphic Encryption [108.77460689459247]
ホモモルフィック暗号化(HE)は、最近、暗号化されたフィールド上で計算を行う能力により、ますます注目を集めている。
本稿では,スケーリング問題の解決に向けて,新しい分散HEベースのデータマイニングフレームワークを提案する。
各種データマイニングアルゴリズムとベンチマークデータセットを用いて,新しいフレームワークの有効性と有効性を検証する。
論文 参考訳(メタデータ) (2020-06-17T18:14:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。