論文の概要: Modelling Sampling Distributions of Test Statistics with Autograd
- arxiv url: http://arxiv.org/abs/2405.02488v2
- Date: Tue, 29 Oct 2024 01:02:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-30 13:37:38.698436
- Title: Modelling Sampling Distributions of Test Statistics with Autograd
- Title(参考訳): 自動分解によるテスト統計のサンプリング分布のモデル化
- Authors: Ali Al Kadhim, Harrison B. Prosper,
- Abstract要約: 条件付き1次元サンプリング分布をモデル化する手法が,確率密度比法の代替となるかを検討する。
比較的単純で効果的なニューラルネットワークモデルは、様々な方法で予測の不確実性が定量化される。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Simulation-based inference methods that feature correct conditional coverage of confidence sets based on observations that have been compressed to a scalar test statistic require accurate modeling of either the p-value function or the cumulative distribution function (cdf) of the test statistic. If the model of the cdf, which is typically a deep neural network, is a function of the test statistic then the derivative of the neural network with respect to the test statistic furnishes an approximation of the sampling distribution of the test statistic. We explore whether this approach to modeling conditional 1-dimensional sampling distributions is a viable alternative to the probability density-ratio method, also known as the likelihood-ratio trick. Relatively simple, yet effective, neural network models are used whose predictive uncertainty is quantified through a variety of methods.
- Abstract(参考訳): スカラーテスト統計学に圧縮された観測結果に基づいて、信頼セットの正確な条件付きカバレッジを特徴付けるシミュレーションベースの推論法は、テスト統計学のp値関数または累積分布関数(cdf)の正確なモデリングを必要とする。
一般にディープニューラルネットワークであるcdfのモデルがテスト統計学の関数であれば、テスト統計学に関するニューラルネットワークの微分はテスト統計学のサンプリング分布の近似を与える。
条件付き1次元サンプリング分布をモデル化するこのアプローチが、確率密度比法(英語版)の代替となりうるかどうかを考察する。
比較的単純で効果的なニューラルネットワークモデルは、様々な方法で予測の不確実性が定量化される。
関連論文リスト
- Robust Estimation for Kernel Exponential Families with Smoothed Total Variation Distances [2.317910166616341]
統計的推測では、標本は独立であり、確率分布から同一に分布していると一般的に仮定する。
本稿では,GAN-like 推定器の一般統計モデルへの応用について検討する。
論文 参考訳(メタデータ) (2024-10-28T05:50:47Z) - Accuracy-Preserving Calibration via Statistical Modeling on Probability
Simplex [5.64979077798699]
本稿では, 確率単純度に基づく確率モデルとして, コンクリート分布を用いた精度保存キャリブレーション法を提案する。
提案手法は,ベンチマークを用いてキャリブレーションを精度よく保存する作業において,従来の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-02-21T12:39:20Z) - User-defined Event Sampling and Uncertainty Quantification in Diffusion
Models for Physical Dynamical Systems [49.75149094527068]
拡散モデルを用いて予測を行い,カオス力学系に対する不確かさの定量化が可能であることを示す。
本研究では,雑音レベルが低下するにつれて真の分布に収束する条件付きスコア関数の確率的近似法を開発する。
推論時に非線形ユーザ定義イベントを条件付きでサンプリングすることができ、分布の尾部からサンプリングした場合でもデータ統計と一致させることができる。
論文 参考訳(メタデータ) (2023-06-13T03:42:03Z) - Learning Multivariate CDFs and Copulas using Tensor Factorization [39.24470798045442]
データの多変量分布を学習することは、統計学と機械学習における中核的な課題である。
本研究では,多変量累積分布関数(CDF)を学習し,混合確率変数を扱えるようにすることを目的とする。
混合確率変数の合同CDFの任意のグリッドサンプリング版は、単純ベイズモデルとして普遍表現を許容することを示す。
提案モデルの性能を,回帰,サンプリング,データ計算を含むいくつかの合成および実データおよびアプリケーションで実証する。
論文 参考訳(メタデータ) (2022-10-13T16:18:46Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
条件付き局所独立は、連続的な時間プロセス間の独立関係である。
条件付き地域独立の非パラメトリックテストは行われていない。
二重機械学習に基づく非パラメトリックテストを提案する。
論文 参考訳(メタデータ) (2022-03-25T10:31:02Z) - Model-agnostic out-of-distribution detection using combined statistical
tests [15.27980070479021]
本稿では,学習された生成モデルを用いた分布外検出のための簡易な手法を提案する。
古典的パラメトリックテスト(ラオのスコアテスト)と最近導入された定性テストを組み合わせる。
その単純さと汎用性にもかかわらず、これらの手法はモデル固有のアウト・オブ・ディストリビューション検出アルゴリズムと競合することがある。
論文 参考訳(メタデータ) (2022-03-02T13:32:09Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Density of States Estimation for Out-of-Distribution Detection [69.90130863160384]
DoSEは状態推定器の密度である。
我々は、他の教師なしOOD検出器に対するDoSEの最先端性能を実証する。
論文 参考訳(メタデータ) (2020-06-16T16:06:25Z) - Balance-Subsampled Stable Prediction [55.13512328954456]
本稿では, 分数分解設計理論に基づく新しいバランスサブサンプル安定予測法を提案する。
設計理論解析により,提案手法は分布シフトによって誘導される予測器間の共起効果を低減できることを示した。
合成および実世界の両方のデータセットに関する数値実験により、BSSPアルゴリズムは未知のテストデータ間で安定した予測を行うためのベースライン法を著しく上回っていることが示された。
論文 参考訳(メタデータ) (2020-06-08T07:01:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。