論文の概要: Testing Conditional Mean Independence Using Generative Neural Networks
- arxiv url: http://arxiv.org/abs/2501.17345v1
- Date: Tue, 28 Jan 2025 23:35:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:54:42.364965
- Title: Testing Conditional Mean Independence Using Generative Neural Networks
- Title(参考訳): 生成ニューラルネットワークを用いた条件付き平均独立性試験
- Authors: Yi Zhang, Linjun Huang, Yun Yang, Xiaofeng Shao,
- Abstract要約: 我々は,新しい集団CMI尺度とブートストラップモデルに基づくテスト手順を導入する。
深部生成ニューラルネットワークは、人口測定に関わる条件付き平均関数を推定するために用いられる。
- 参考スコア(独自算出の注目度): 8.323172773256449
- License:
- Abstract: Conditional mean independence (CMI) testing is crucial for statistical tasks including model determination and variable importance evaluation. In this work, we introduce a novel population CMI measure and a bootstrap-based testing procedure that utilizes deep generative neural networks to estimate the conditional mean functions involved in the population measure. The test statistic is thoughtfully constructed to ensure that even slowly decaying nonparametric estimation errors do not affect the asymptotic accuracy of the test. Our approach demonstrates strong empirical performance in scenarios with high-dimensional covariates and response variable, can handle multivariate responses, and maintains nontrivial power against local alternatives outside an $n^{-1/2}$ neighborhood of the null hypothesis. We also use numerical simulations and real-world imaging data applications to highlight the efficacy and versatility of our testing procedure.
- Abstract(参考訳): 条件付き平均独立テスト(CMI)は、モデル決定や変数重要度評価を含む統計処理に不可欠である。
そこで本研究では, 人口測定に関わる条件平均関数を推定するために, 深層生成ニューラルネットワークを用いた新しい集団CMI尺度とブートストラップに基づく試験手法を提案する。
テスト統計は、ゆっくりと減衰する非パラメトリック推定誤差でさえ、テストの漸近的精度に影響を与えないように、慎重に構成されている。
提案手法は, 高次元共変量および応答変数を持つシナリオにおいて, 強い経験的性能を示し, 多変量応答を処理でき, ヌル仮説の近傍の$n^{-1/2}$以外の局所的な代替品に対して非自明なパワーを維持する。
また、シミュレーションや実世界の画像データを用いて、テスト手順の有効性と汎用性を強調した。
関連論文リスト
- Doubly Robust Conditional Independence Testing with Generative Neural Networks [8.323172773256449]
本稿では、第3の確率ベクトル$Z$を与えられた2つのジェネリックランダムベクトル$X$と$Y$の条件独立性をテストする問題に対処する。
条件分布を明示的に推定しない新しい非パラメトリック試験法を提案する。
論文 参考訳(メタデータ) (2024-07-25T01:28:59Z) - Modelling Sampling Distributions of Test Statistics with Autograd [0.0]
条件付き1次元サンプリング分布をモデル化する手法が,確率密度比法の代替となるかを検討する。
比較的単純で効果的なニューラルネットワークモデルは、様々な方法で予測の不確実性が定量化される。
論文 参考訳(メタデータ) (2024-05-03T21:34:12Z) - Precise Error Rates for Computationally Efficient Testing [75.63895690909241]
本稿では,計算複雑性に着目した単純な対数-単純仮説テストの問題を再考する。
線形スペクトル統計に基づく既存の試験は、I型とII型の誤差率の間の最良のトレードオフ曲線を達成する。
論文 参考訳(メタデータ) (2023-11-01T04:41:16Z) - From Static Benchmarks to Adaptive Testing: Psychometrics in AI Evaluation [60.14902811624433]
本稿では,静的評価手法から適応テストへのパラダイムシフトについて論じる。
これには、ベンチマークで各テスト項目の特性と価値を推定し、リアルタイムでアイテムを動的に調整することが含まれる。
我々は、AI評価にサイコメトリックを採用する現在のアプローチ、アドバンテージ、そして根底にある理由を分析します。
論文 参考訳(メタデータ) (2023-06-18T09:54:33Z) - Learning to Increase the Power of Conditional Randomization Tests [8.883733362171032]
モデル-X条件ランダム化テストは、条件独立性テストのための一般的なフレームワークである。
本稿では,モデルXテストのパワー向上を目的とした新しいモデル適合方式を提案する。
論文 参考訳(メタデータ) (2022-07-03T12:29:25Z) - Nonparametric Conditional Local Independence Testing [69.31200003384122]
条件付き局所独立は、連続的な時間プロセス間の独立関係である。
条件付き地域独立の非パラメトリックテストは行われていない。
二重機械学習に基づく非パラメトリックテストを提案する。
論文 参考訳(メタデータ) (2022-03-25T10:31:02Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - Noisy Adaptive Group Testing using Bayesian Sequential Experimental
Design [63.48989885374238]
病気の感染頻度が低い場合、Dorfman氏は80年前に、人のテストグループは個人でテストするよりも効率が良いことを示した。
本研究の目的は,ノイズの多い環境で動作可能な新しいグループテストアルゴリズムを提案することである。
論文 参考訳(メタデータ) (2020-04-26T23:41:33Z) - Dropout Strikes Back: Improved Uncertainty Estimation via Diversity
Sampling [3.077929914199468]
ニューラルネットワークにおけるドロップアウト層に対するサンプリング分布の変更により,不確実性評価の品質が向上することを示す。
主要なアイデアは、ニューロン間のデータ駆動相関を計算し、最大多様なニューロンを含むサンプルを生成する、という2つの主要なステップで構成されています。
論文 参考訳(メタデータ) (2020-03-06T15:20:04Z) - Nonparametric Inference under B-bits Quantization [5.958064620718292]
そこで本研究では,B$ビットに量子化されたサンプルに基づく非パラメトリック試験手法を提案する。
特に、B$が一定の閾値を超えると、提案した非パラメトリックテスト手順が古典的なミニマックステスト率を達成することを示す。
論文 参考訳(メタデータ) (2019-01-24T18:43:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。