論文の概要: DiffuseTrace: A Transparent and Flexible Watermarking Scheme for Latent Diffusion Model
- arxiv url: http://arxiv.org/abs/2405.02696v2
- Date: Fri, 30 May 2025 08:06:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-02 19:47:52.390085
- Title: DiffuseTrace: A Transparent and Flexible Watermarking Scheme for Latent Diffusion Model
- Title(参考訳): DiffuseTrace: 潜時拡散モデルのための透明でフレキシブルな透かし方式
- Authors: Liangqi Lei, Keke Gai, Jing Yu, Liehuang Zhu,
- Abstract要約: 生成モデル出力に透かしを追加することは、著作権の追跡と潜在的なリスクの軽減に欠かせないテクニックである。
本稿では拡散モデル成分の微調整に依存しないDiffuseTraceと呼ばれる新しい手法を提案する。
8種類の画像処理用透かし攻撃と3種類の生成用透かし攻撃の下では、DiffuseTraceは透かし検出率99%、帰属精度94%以上を維持している。
- 参考スコア(独自算出の注目度): 15.982765272033058
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Latent Diffusion Models (LDMs) enable a wide range of applications but raise ethical concerns regarding illegal utilization. Adding watermarks to generative model outputs is a vital technique employed for copyright tracking and mitigating potential risks associated with Artificial Intelligence (AI)-generated contents. However, post-processed watermarking methods are unable to withstand generative watermark attacks and there exists a trade-off between image fidelity and watermark strength. Therefore, we propose a novel technique called DiffuseTrace. DiffuseTrace does not rely on fine-tuning of the diffusion model components. The multi-bit watermark is a embedded into the image space semantically without compromising image quality. The watermark component can be utilized as a plug-in in arbitrary diffusion models. We validate through experiments the effectiveness and flexibility of DiffuseTrace. Under 8 types of image processing watermark attacks and 3 types of generative watermark attacks, DiffuseTrace maintains watermark detection rate of 99% and attribution accuracy of over 94%.
- Abstract(参考訳): 潜在拡散モデル(LDM)は幅広い応用を可能にするが、違法利用に関する倫理的懸念を提起する。
生成モデル出力に透かしを追加することは、人工知能(AI)生成コンテンツに関連する潜在的なリスクを軽減し、著作権の追跡に使用される重要なテクニックである。
しかし、後処理による透かし法は、生成的な透かし攻撃に耐えられず、画像の忠実度と透かし強度との間にはトレードオフがある。
そこで我々はDiffuseTraceと呼ばれる新しい手法を提案する。
DiffuseTraceは拡散モデルコンポーネントの微調整に依存しない。
マルチビット透かしは、画像の質を損なうことなく、意味的に画像空間に埋め込まれたものである。
透かし成分は任意の拡散モデルにおけるプラグインとして利用することができる。
DiffuseTraceの有効性と柔軟性を実験により検証した。
8種類の画像処理用透かし攻撃と3種類の生成用透かし攻撃の下では、DiffuseTraceは透かし検出率99%、帰属精度94%以上を維持している。
関連論文リスト
- SEAL: Semantic Aware Image Watermarking [26.606008778795193]
本稿では,生成した画像のセマンティック情報を透かしに直接埋め込む新しい透かし手法を提案する。
キーパターンは、局所性に敏感なハッシュを用いて画像のセマンティック埋め込みから推測することができる。
以上の結果から,画像生成モデルによるリスクを軽減できる可能性が示唆された。
論文 参考訳(メタデータ) (2025-03-15T15:29:05Z) - SleeperMark: Towards Robust Watermark against Fine-Tuning Text-to-image Diffusion Models [77.80595722480074]
SleeperMarkは、回復力のある透かしをT2I拡散モデルに埋め込むように設計されたフレームワークである。
学習したセマンティックな概念から透かし情報を切り離すようモデルに誘導する。
各種拡散モデルにおけるSleeperMarkの有効性について実験を行った。
論文 参考訳(メタデータ) (2024-12-06T08:44:18Z) - Shallow Diffuse: Robust and Invisible Watermarking through Low-Dimensional Subspaces in Diffusion Models [10.726987194250116]
拡散モデル出力にロバストで見えない透かしを埋め込む新しい透かし技術であるShallow Diffuseを導入する。
我々の理論的および経験的分析により,浅度拡散はデータ生成の一貫性と透かしの検出可能性を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2024-10-28T14:51:04Z) - AquaLoRA: Toward White-box Protection for Customized Stable Diffusion Models via Watermark LoRA [67.68750063537482]
拡散モデルは高品質な画像の生成において顕著な成功を収めた。
最近の研究は、SDモデルがポストホック法医学のための透かし付きコンテンツを出力できるようにすることを目的としている。
このシナリオにおける最初の実装としてtextttmethod を提案する。
論文 参考訳(メタデータ) (2024-05-18T01:25:47Z) - Gaussian Shading: Provable Performance-Lossless Image Watermarking for Diffusion Models [71.13610023354967]
著作権保護と不適切なコンテンツ生成は、拡散モデルの実装に課題をもたらす。
本研究では,性能ロスレスかつトレーニング不要な拡散モデル透かし手法を提案する。
論文 参考訳(メタデータ) (2024-04-07T13:30:10Z) - ClearMark: Intuitive and Robust Model Watermarking via Transposed Model
Training [50.77001916246691]
本稿では,人間の直感的な評価を目的とした最初のDNN透かし手法であるClearMarkを紹介する。
ClearMarkは目に見える透かしを埋め込んで、厳格な値閾値なしで人間の意思決定を可能にする。
8,544ビットの透かし容量は、現存する最強の作品に匹敵する。
論文 参考訳(メタデータ) (2023-10-25T08:16:55Z) - Unbiased Watermark for Large Language Models [67.43415395591221]
本研究では, モデル生成出力の品質に及ぼす透かしの影響について検討した。
出力確率分布に影響を与えることなく、透かしを統合することができる。
ウォーターマークの存在は、下流タスクにおけるモデルの性能を損なうものではない。
論文 参考訳(メタデータ) (2023-09-22T12:46:38Z) - Towards Robust Model Watermark via Reducing Parametric Vulnerability [57.66709830576457]
バックドアベースのオーナシップ検証が最近人気となり,モデルオーナがモデルをウォーターマークすることが可能になった。
本研究では,これらの透かし除去モデルを発見し,それらの透かし挙動を復元するミニマックス定式化を提案する。
本手法は,パラメトリックな変化と多数のウォーターマーク除去攻撃に対するモデル透かしの堅牢性を向上させる。
論文 参考訳(メタデータ) (2023-09-09T12:46:08Z) - Tree-Ring Watermarks: Fingerprints for Diffusion Images that are
Invisible and Robust [55.91987293510401]
生成モデルのアウトプットを透かしは、著作権をトレースし、AI生成コンテンツによる潜在的な害を防ぐ重要なテクニックである。
本稿では,拡散モデル出力を頑健にフィンガープリントするTree-Ring Watermarkingという新しい手法を提案する。
私たちの透かしは画像空間に意味的に隠れており、現在デプロイされている透かしよりもはるかに堅牢です。
論文 参考訳(メタデータ) (2023-05-31T17:00:31Z) - On Function-Coupled Watermarks for Deep Neural Networks [15.478746926391146]
本稿では,透かし除去攻撃に対して効果的に防御できる新しいDNN透かし法を提案する。
私たちの重要な洞察は、透かしとモデル機能の結合を強化することです。
その結果,アグレッシブ・ウォーターマーク除去攻撃による100%透かし認証の成功率を示した。
論文 参考訳(メタデータ) (2023-02-08T05:55:16Z) - Piracy-Resistant DNN Watermarking by Block-Wise Image Transformation
with Secret Key [15.483078145498085]
提案手法は学習可能な変換画像を用いてモデルに透かしパターンを埋め込む。
海賊に耐性があるため、元のウォーターマークは海賊版ウォーターマークでは上書きできない。
その結果,高い透かし検出精度を維持しつつ,微調整や刈り込み攻撃に対して弾力性を示した。
論文 参考訳(メタデータ) (2021-04-09T08:21:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。