Resonant-force induced symmetry breaking in a quantum parametric oscillator
- URL: http://arxiv.org/abs/2405.02706v2
- Date: Fri, 16 Aug 2024 14:38:34 GMT
- Title: Resonant-force induced symmetry breaking in a quantum parametric oscillator
- Authors: D. K. J. Boneß, W. Belzig, M. I. Dykman,
- Abstract summary: An extra force at the vibration frequency breaks the symmetry of the states.
The effect can be extremely strong due to the interplay between the force and the quantum fluctuations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A parametrically modulated oscillator has two opposite-phase vibrational states at half the modulation frequency. An extra force at the vibration frequency breaks the symmetry of the states. The effect can be extremely strong due to the interplay between the force and the quantum fluctuations resulting from the coupling of the oscillator to a thermal bath. The force changes the rates of the fluctuation-induced walk over the quantum states of the oscillator. If the number of the states is large, the effect accumulates to an exponentially large factor in the rate of switching between the vibrational states. We find the factor and analyze it in the limiting cases including the prebifurcation regime where the system is close but not too close to the bifurcation point.
Related papers
- Zero-temperature phase-flip rate in a biased parametric oscillator [0.0]
An extra drive at half the modulation frequency provides an effective bias that lifts the state symmetry.
We find that the rate of switching from a ''shallow'' state can become anomalously small.
Results pave the way for implementing nonreciprocal quantum Ising systems.
arXiv Detail & Related papers (2025-01-13T18:52:18Z) - Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Adiabatic versus instantaneous transitions from a harmonic oscillator to an inverted oscillator [49.1574468325115]
Mean energy increases when the frequency returns to its initial value, and the increment coefficient is determined by the exponent in the power law of the frequency crossing zero.
If the frequency becomes imaginary, the absolute value of mean energy increases exponentially, even in the adiabatic regime.
Small corrections to the leading terms of simple adiabatic approximate formulas are crucial in this case, due to the unstable nature of the motion.
arXiv Detail & Related papers (2024-03-11T02:03:19Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Unconditional Wigner-negative mechanical entanglement with
linear-and-quadratic optomechanical interactions [62.997667081978825]
We propose two schemes for generating Wigner-negative entangled states unconditionally in mechanical resonators.
We show analytically that both schemes stabilize a Wigner-negative entangled state that combines the entanglement of a two-mode squeezed vacuum with a cubic nonlinearity.
We then perform extensive numerical simulations to test the robustness of Wigner-negative entanglement attained by approximate CPE states stabilized in the presence of thermal decoherence.
arXiv Detail & Related papers (2023-02-07T19:00:08Z) - Exact solution and coherent states of an asymmetric oscillator with
position-dependent mass [0.0]
Deformed oscillator with position-dependent mass is studied in classical and quantum formalisms.
Open trajectories in phase space are associated with scattering states and continuous energy spectrum.
An oscillation of the time evolution of the uncertainty relationship is also observed, whose amplitude increases as the deformation increases.
arXiv Detail & Related papers (2023-02-04T14:16:23Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Quantum vibrational mode in a cavity confining a massless spinor field [91.3755431537592]
We analyse the reaction of a massless (1+1)-dimensional spinor field to the harmonic motion of one cavity wall.
We demonstrate that the system is able to convert bosons into fermion pairs at the lowest perturbative order.
arXiv Detail & Related papers (2022-09-12T08:21:12Z) - Optomechanical parametric oscillation of a quantum light-fluid lattice [0.0]
We describe a fully-resonant optomechanical parametric amplifier involving a polariton condensate in a trap lattice quadratically coupled to mechanical modes.
We show that the coherent mechanical oscillations correspond to parametric resonances with threshold condition different to that of standard linear optomechanical self-oscillation.
The observed new phenomena can have applications for the generation of entangled phonon pairs, squeezed mechanical states relevant in sensing and quantum computation, and for the bidirectional frequency conversion of signals in a technologically relevant range.
arXiv Detail & Related papers (2021-12-30T23:59:43Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Nonclassical energy squeezing of a macroscopic mechanical oscillator [0.0]
We create nonclassical states by quadratically coupling motion to the energy levels of a Cooper-pair box qubit.
We observe a striking feature of the quadratic coupling: the recoil of the mechanical oscillator caused by qubit transitions.
arXiv Detail & Related papers (2020-05-08T19:07:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.