論文の概要: Graph as Point Set
- arxiv url: http://arxiv.org/abs/2405.02795v2
- Date: Thu, 30 May 2024 18:44:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-03 19:23:22.198775
- Title: Graph as Point Set
- Title(参考訳): 点集合としてのグラフ
- Authors: Xiyuan Wang, Pan Li, Muhan Zhang,
- Abstract要約: 本稿では,相互接続ノードを独立点の集合に変換するグラフ・ツー・セット変換法を提案する。
これにより、セットエンコーダを使用してグラフから学習することが可能になり、グラフニューラルネットワークの設計空間が大幅に拡張される。
提案手法の有効性を示すために,グラフから変換された点集合を入力として受け入れる変換器アーキテクチャであるPoint Set Transformer (PST)を導入する。
- 参考スコア(独自算出の注目度): 31.448841287258116
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph is a fundamental data structure to model interconnections between entities. Set, on the contrary, stores independent elements. To learn graph representations, current Graph Neural Networks (GNNs) primarily use message passing to encode the interconnections. In contrast, this paper introduces a novel graph-to-set conversion method that bijectively transforms interconnected nodes into a set of independent points and then uses a set encoder to learn the graph representation. This conversion method holds dual significance. Firstly, it enables using set encoders to learn from graphs, thereby significantly expanding the design space of GNNs. Secondly, for Transformer, a specific set encoder, we provide a novel and principled approach to inject graph information losslessly, different from all the heuristic structural/positional encoding methods adopted in previous graph transformers. To demonstrate the effectiveness of our approach, we introduce Point Set Transformer (PST), a transformer architecture that accepts a point set converted from a graph as input. Theoretically, PST exhibits superior expressivity for both short-range substructure counting and long-range shortest path distance tasks compared to existing GNNs. Extensive experiments further validate PST's outstanding real-world performance. Besides Transformer, we also devise a Deepset-based set encoder, which achieves performance comparable to representative GNNs, affirming the versatility of our graph-to-set method.
- Abstract(参考訳): グラフはエンティティ間の相互接続をモデル化するための基本的なデータ構造である。
反対に、独立した要素を格納する。
グラフ表現を学習するために、現在のグラフニューラルネットワーク(GNN)は、主にメッセージパッシングを使用して相互接続を符号化している。
一方,本研究では,相互接続したノードを独立点の集合に単射的に変換し,グラフ表現の学習にセットエンコーダを用いる新しいグラフ対セット変換手法を提案する。
この変換法は二重の意義を持つ。
まず、セットエンコーダを使ってグラフから学習し、GNNの設計空間を大幅に拡張する。
第二に、特定の集合エンコーダであるTransformerに対して、従来のグラフトランスフォーマーで採用されているすべてのヒューリスティックな構造/位置符号化法とは異なる、グラフ情報を損失なく注入するための、新しく原則化されたアプローチを提供する。
提案手法の有効性を示すために,グラフから変換された点集合を入力として受け入れる変換器アーキテクチャであるPoint Set Transformer (PST)を導入する。
理論的には、PSTは、既存のGNNと比較して、短距離部分構造カウントと短距離経路距離タスクの両方に優れた表現性を示す。
大規模な実験により、PSTの卓越した実世界の性能が検証された。
Transformer以外にも,グラフ・ツー・セット方式の汎用性を確認することで,代表的GNNに匹敵するパフォーマンスを実現する,Deepsetベースのセット・エンコーダも考案した。
関連論文リスト
- A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
グラフ構造を先行として扱うことで,特徴中心の事前学習の視点を導入する。
我々のフレームワークであるGraph Sequence Pretraining with Transformer (GSPT)はランダムウォークを通してノードコンテキストをサンプリングする。
GSPTはノード分類とリンク予測の両方に容易に適応でき、様々なデータセットで有望な経験的成功を示す。
論文 参考訳(メタデータ) (2024-06-19T22:30:08Z) - Interpretable Lightweight Transformer via Unrolling of Learned Graph Smoothness Priors [16.04850782310842]
我々は反復最適化アルゴリズムをアンロールすることで、解釈可能で軽量なトランスフォーマーのようなニューラルネットワークを構築する。
正規化信号依存グラフ学習モジュールは、従来の変圧器の基本自己保持機構の変種に相当する。
論文 参考訳(メタデータ) (2024-06-06T14:01:28Z) - Graph Transformers without Positional Encodings [0.7252027234425334]
グラフのラプラシアンスペクトルを認識する新しいスペクトル対応アテンション機構を用いたグラフ変換器であるEigenformerを紹介する。
我々は,多数の標準GNNベンチマークにおいて,SOTAグラフ変換器の性能向上を実証的に示す。
論文 参考訳(メタデータ) (2024-01-31T12:33:31Z) - Discrete Graph Auto-Encoder [52.50288418639075]
離散グラフオートエンコーダ(DGAE)という新しいフレームワークを導入する。
まず、置換同変オートエンコーダを用いてグラフを離散潜在ノード表現の集合に変換する。
2番目のステップでは、離散潜在表現の集合をソートし、特別に設計された自己回帰モデルを用いてそれらの分布を学習する。
論文 参考訳(メタデータ) (2023-06-13T12:40:39Z) - AGFormer: Efficient Graph Representation with Anchor-Graph Transformer [95.1825252182316]
Anchor Graph Transformer (AGFormer) と呼ばれる新しいグラフトランスアーキテクチャを提案する。
AGFormerはまずいくつかの代表アンカーを取得し、次にノード間メッセージパッシングをアンカー間メッセージパッシングプロセスとアンカー間メッセージパッシングプロセスに変換する。
いくつかのベンチマークデータセットに対する大規模な実験は、提案されたAGFormerの有効性とメリットを示している。
論文 参考訳(メタデータ) (2023-05-12T14:35:42Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
長距離依存のモデリングは、コンピュータビジョンにおけるシーン理解タスクに不可欠である。
完全連結グラフはそのようなモデリングには有益であるが、計算オーバーヘッドは禁じられている。
本稿では,計算複雑性を大幅に低減する動的グラフメッセージパッシングネットワークを提案する。
論文 参考訳(メタデータ) (2022-09-20T14:41:37Z) - Pure Transformers are Powerful Graph Learners [51.36884247453605]
グラフ固有の修正のない標準変換器は、理論と実践の両方において、グラフ学習において有望な結果をもたらす可能性があることを示す。
このアプローチは、理論的には、同変線形層からなる不変グラフネットワーク(2-IGN)と同程度に表現可能であることを証明している。
提案手法は,Tokenized Graph Transformer (TokenGT) を作成した。
論文 参考訳(メタデータ) (2022-07-06T08:13:06Z) - Deformable Graph Transformer [31.254872949603982]
本稿では動的にサンプリングされたキーと値のペアでスパースアテンションを行うDeformable Graph Transformer (DGT)を提案する。
実験により、我々の新しいグラフトランスフォーマーは既存のトランスフォーマーベースモデルより一貫して優れていることが示された。
論文 参考訳(メタデータ) (2022-06-29T00:23:25Z) - Gransformer: Transformer-based Graph Generation [14.161975556325796]
Gransformerは、グラフを生成するためのTransformerに基づくアルゴリズムである。
我々は、与えられたグラフの構造情報を利用するためにTransformerエンコーダを変更する。
また、ノードペア間のグラフベースの親しみ度尺度も導入する。
論文 参考訳(メタデータ) (2022-03-25T14:05:12Z) - Graph Neural Networks with Learnable Structural and Positional
Representations [83.24058411666483]
任意のグラフの大きな問題は、ノードの標準位置情報の欠如である。
ノードの位置ノード(PE)を導入し、Transformerのように入力層に注入する。
両方のGNNクラスで学習可能なPEを考えると、分子データセットのパフォーマンスは2.87%から64.14%に向上する。
論文 参考訳(メタデータ) (2021-10-15T05:59:15Z) - A Generalization of Transformer Networks to Graphs [5.736353542430439]
標準モデルと比較して4つの新しい特性を持つグラフトランスを紹介します。
アーキテクチャはエッジ特徴表現に拡張され、化学(結合型)やリンク予測(知識グラフにおけるエンタリティ関係)といったタスクに重要なものとなる。
論文 参考訳(メタデータ) (2020-12-17T16:11:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。