You Only Need Half: Boosting Data Augmentation by Using Partial Content
- URL: http://arxiv.org/abs/2405.02830v1
- Date: Sun, 5 May 2024 06:57:40 GMT
- Title: You Only Need Half: Boosting Data Augmentation by Using Partial Content
- Authors: Juntao Hu, Yuan Wu,
- Abstract summary: We propose a novel data augmentation method termed You Only Need hAlf (YONA)
YONA bisects an image, substitutes one half with noise, and applies data augmentation techniques to the remaining half.
This method reduces the redundant information in the original image, encourages neural networks to recognize objects from incomplete views, and significantly enhances neural networks' robustness.
- Score: 5.611768906855499
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel data augmentation method termed You Only Need hAlf (YONA), which simplifies the augmentation process. YONA bisects an image, substitutes one half with noise, and applies data augmentation techniques to the remaining half. This method reduces the redundant information in the original image, encourages neural networks to recognize objects from incomplete views, and significantly enhances neural networks' robustness. YONA is distinguished by its properties of parameter-free, straightforward application, enhancing various existing data augmentation strategies, and thereby bolstering neural networks' robustness without additional computational cost. To demonstrate YONA's efficacy, extensive experiments were carried out. These experiments confirm YONA's compatibility with diverse data augmentation methods and neural network architectures, yielding substantial improvements in CIFAR classification tasks, sometimes outperforming conventional image-level data augmentation methods. Furthermore, YONA markedly increases the resilience of neural networks to adversarial attacks. Additional experiments exploring YONA's variants conclusively show that masking half of an image optimizes performance. The code is available at https://github.com/HansMoe/YONA.
Related papers
- Do We Need All the Synthetic Data? Towards Targeted Synthetic Image Augmentation via Diffusion Models [12.472871440252105]
We show that synthetically augmenting part of the data that is not learned early in training outperforms augmenting the entire dataset.<n>Our method boosts the performance by up to2.8% in a variety of scenarios.<n>It can also easily stack with existing weak and strong augmentation strategies to further boost the performance.
arXiv Detail & Related papers (2025-05-27T07:27:03Z) - IncSAR: A Dual Fusion Incremental Learning Framework for SAR Target Recognition [13.783950035836593]
IncSAR is an incremental learning framework designed to tackle catastrophic forgetting in target recognition.
To mitigate the speckle noise inherent in SAR images, we employ a denoising module based on a neural network approximation.
Experiments on the MSTAR, SAR-AIRcraft-1.0, and OpenSARShip benchmark datasets demonstrate that IncSAR significantly outperforms state-of-the-art approaches.
arXiv Detail & Related papers (2024-10-08T08:49:47Z) - Image edge enhancement for effective image classification [7.470763273994321]
We propose an edge enhancement-based method to enhance both accuracy and training speed of neural networks.
Our approach involves extracting high frequency features, such as edges, from images within the available dataset and fusing them with the original images.
arXiv Detail & Related papers (2024-01-13T10:01:34Z) - ADASR: An Adversarial Auto-Augmentation Framework for Hyperspectral and
Multispectral Data Fusion [54.668445421149364]
Deep learning-based hyperspectral image (HSI) super-resolution aims to generate high spatial resolution HSI (HR-HSI) by fusing hyperspectral image (HSI) and multispectral image (MSI) with deep neural networks (DNNs)
In this letter, we propose a novel adversarial automatic data augmentation framework ADASR that automatically optimize and augments HSI-MSI sample pairs to enrich data diversity for HSI-MSI fusion.
arXiv Detail & Related papers (2023-10-11T07:30:37Z) - Unleashing the Power of Depth and Pose Estimation Neural Networks by
Designing Compatible Endoscopic Images [12.412060445862842]
We conduct a detail analysis of the properties of endoscopic images and improve the compatibility of images and neural networks.
First, we introcude the Mask Image Modelling (MIM) module, which inputs partial image information instead of complete image information.
Second, we propose a lightweight neural network to enhance the endoscopic images, to explicitly improve the compatibility between images and neural networks.
arXiv Detail & Related papers (2023-09-14T02:19:38Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Distributed Neural Representation for Reactive in situ Visualization [23.80657290203846]
Implicit neural representations (INRs) have emerged as a powerful tool for compressing large-scale volume data.
We develop a distributed neural representation and optimize it for in situ visualization.
Our technique eliminates data exchanges between processes, achieving state-of-the-art compression speed, quality and ratios.
arXiv Detail & Related papers (2023-03-28T03:55:47Z) - A Generic Shared Attention Mechanism for Various Backbone Neural Networks [53.36677373145012]
Self-attention modules (SAMs) produce strongly correlated attention maps across different layers.
Dense-and-Implicit Attention (DIA) shares SAMs across layers and employs a long short-term memory module.
Our simple yet effective DIA can consistently enhance various network backbones.
arXiv Detail & Related papers (2022-10-27T13:24:08Z) - ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available.
We present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks.
arXiv Detail & Related papers (2022-10-27T02:55:15Z) - You Only Cut Once: Boosting Data Augmentation with a Single Cut [85.90978190685837]
We present You Only Cut Once (YOCO) for performing data augmentations.
YOCO cuts one image into two pieces and performs data augmentations individually within each piece.
Applying YOCO improves the diversity of the augmentation per sample and encourages neural networks to recognize objects from partial information.
arXiv Detail & Related papers (2022-01-28T12:34:40Z) - Adversarial Feature Augmentation and Normalization for Visual
Recognition [109.6834687220478]
Recent advances in computer vision take advantage of adversarial data augmentation to ameliorate the generalization ability of classification models.
Here, we present an effective and efficient alternative that advocates adversarial augmentation on intermediate feature embeddings.
We validate the proposed approach across diverse visual recognition tasks with representative backbone networks.
arXiv Detail & Related papers (2021-03-22T20:36:34Z) - Convolutional versus Self-Organized Operational Neural Networks for
Real-World Blind Image Denoising [25.31981236136533]
We tackle the real-world blind image denoising problem by employing, for the first time, a deep Self-ONN.
Deep Self-ONNs consistently achieve superior results with performance gains of up to 1.76dB in PSNR.
arXiv Detail & Related papers (2021-03-04T14:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.