論文の概要: Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents
- arxiv url: http://arxiv.org/abs/2405.02957v2
- Date: Thu, 26 Dec 2024 06:02:38 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-30 21:44:04.737617
- Title: Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents
- Title(参考訳): エージェント・インスティテュート : 進化可能な医療エージェントを持つ病院のシミュレーション
- Authors: Junkai Li, Siyu Wang, Meng Zhang, Weitao Li, Yunghwei Lai, Xinhui Kang, Weizhi Ma, Yang Liu,
- Abstract要約: 治療過程全体をシミュレートした,エージェント病院という病院のシミュラムを紹介した。
すべての患者、看護師、医師は、大規模言語モデル(LLM)を利用した自律型エージェントである。
- 参考スコア(独自算出の注目度): 14.167006531064517
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: In this paper, we introduce a simulacrum of hospital called Agent Hospital that simulates the entire process of treating illness. All patients, nurses, and doctors are autonomous agents powered by large language models (LLMs). Our central goal is to enable a doctor agent to learn how to treat illness within the simulacrum. To do so, we propose a method called MedAgent-Zero. As the simulacrum can simulate disease onset and progression based on knowledge bases and LLMs, doctor agents can keep accumulating experience from both successful and unsuccessful cases. Simulation experiments show that the treatment performance of doctor agents consistently improves on various tasks. More interestingly, the knowledge the doctor agents have acquired in Agent Hospital is applicable to real-world medicare benchmarks. After treating around ten thousand patients (real-world doctors may take over two years), the evolved doctor agent achieves a state-of-the-art accuracy of 93.06% on a subset of the MedQA dataset that covers major respiratory diseases. This work paves the way for advancing the applications of LLM-powered agent techniques in medical scenarios.
- Abstract(参考訳): 本稿では, 治療過程全体をシミュレートした, エージェント病院という病院のシミュラクルを紹介する。
全ての患者、看護師、医師は、大きな言語モデル(LLM)を動力とする自律的なエージェントである。
私たちの中心的な目標は、医師がシラクラム内で病気を治療する方法を学ぶことを可能にすることです。
そこで我々はMedAgent-Zeroという手法を提案する。
シミュラクルムは、知識ベースとLLMに基づいて、疾患の発症と進行をシミュレートできるため、医師は、成功したケースと失敗したケースの両方から経験を蓄積し続けることができる。
シミュレーション実験により, 医師の処理性能は, 様々な課題において一貫して改善されていることがわかった。
さらに興味深いことに、エージェント病院で医師が取得した知識は、実際の医療ベンチマークに適用できる。
約1万人の患者(現実の医師は2年以上かかるかもしれない)を治療した後、進化した医師は、主要な呼吸器疾患をカバーするMedQAデータセットのサブセットで93.06%の最先端の精度を達成した。
この研究は、医学的シナリオにおけるLSMを利用したエージェント技術の進歩の道を開くものである。
関連論文リスト
- Self-Evolving Multi-Agent Simulations for Realistic Clinical Interactions [16.50490537786593]
MedAgentSimは、医師、患者、測定エージェントによる、オープンソースのシミュレートされた臨床環境である。
従来のアプローチとは違って,本フレームワークでは,マルチターン会話を通じて医師が患者と活発に交流する必要がある。
我々は、モデルが診断戦略を反復的に洗練できる自己改善メカニズムを組み込んだ。
論文 参考訳(メタデータ) (2025-03-28T17:59:53Z) - MediTools -- Medical Education Powered by LLMs [0.0]
この研究プロジェクトは、医学教育の強化とワークフローの課題に対処するために、大きな言語モデルを活用する。
最初のツールは皮膚科学のケースシミュレーションツールであり、様々な皮膚疾患を描写した実際の患者画像を使用する。
このアプリケーションには、研究論文のより深い洞察を得るためにLLMと対話するためのAI強化ツールと、さまざまな医療専門分野向けのLLM生成された記事の要約を提供するGoogle Newsツールの2つの追加ツールが含まれている。
論文 参考訳(メタデータ) (2025-03-28T03:57:32Z) - TAMA: A Human-AI Collaborative Thematic Analysis Framework Using Multi-Agent LLMs for Clinical Interviews [54.35097932763878]
Thematic Analysis (TA) は、構造化されていないテキストデータの潜在意味を明らかにするために広く使われている定性的手法である。
本稿では,多エージェントLEMを用いた人間とAIの協調的テーマ分析フレームワークTAMAを提案する。
TAMA は既存の LLM 支援TA アプローチよりも優れており,高い主題的ヒット率,カバレッジ,独特性を実現している。
論文 参考訳(メタデータ) (2025-03-26T15:58:16Z) - M^3Builder: A Multi-Agent System for Automated Machine Learning in Medical Imaging [54.40890979694209]
医療画像における機械学習(ML)の自動化を目的とした,新しいマルチエージェントシステムであるM3Builderを提案する。
M3Builderは、複雑なマルチステップ医療MLに取り組むために、4つの専門エージェントを雇用している。
既存のMLエージェント設計と比較して、M3Builderは医療画像におけるMLタスクの完了に優れたパフォーマンスを示している。
論文 参考訳(メタデータ) (2025-02-27T17:29:46Z) - Towards Next-Generation Medical Agent: How o1 is Reshaping Decision-Making in Medical Scenarios [46.729092855387165]
本稿では,医療用AIエージェントのバックボーンLSMの選択について検討する。
我々の研究結果は、o1の診断精度と一貫性を高める能力を示し、よりスマートでより応答性の高いAIツールへの道を開いた。
論文 参考訳(メタデータ) (2024-11-16T18:19:53Z) - MedAide: Towards an Omni Medical Aide via Specialized LLM-based Multi-Agent Collaboration [16.062646854608094]
大規模言語モデル(LLM)による対話システムは、現在医療分野において潜在的に有望であることを示している。
本稿では,医療専門サービスのためのオムニ・メディカル・マルチエージェント・コラボレーション・フレームワークであるMedAideを提案する。
論文 参考訳(メタデータ) (2024-10-16T13:10:27Z) - AIPatient: Simulating Patients with EHRs and LLM Powered Agentic Workflow [33.8495939261319]
本稿では,AIPatient Knowledge Graph (AIPatient KG) を入力とし,生成バックボーンとしてReasoning Retrieval-Augmented Generation (RAG) を開発した。
Reasoning RAGは、検索、KGクエリ生成、抽象化、チェッカー、書き直し、要約を含むタスクにまたがる6つのLLMエージェントを活用する。
ANOVA F-value 0.6126, p>0.1, ANOVA F-value 0.782, p>0.1, ANOVA F-value 0.782, p>0.1, ANOVA F-value 0.6126, p>0.1)。
論文 参考訳(メタデータ) (2024-09-27T17:17:15Z) - MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making [45.74980058831342]
MDAgents(Medical Decision-making Agents)と呼ばれる新しいマルチエージェントフレームワークを導入する。
割り当てられた単独またはグループの共同作業構造は、実際の医療決定過程をエミュレートして、手元にある医療タスクに合わせて調整される。
MDAgentsは医療知識の理解を必要とするタスクに関する10のベンチマークのうち7つのベンチマークで最高のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-04-22T06:30:05Z) - Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology [0.6397820821509177]
本稿では,大規模言語モデル(LLM)を中心的推論エンジンとして活用する,マルチモーダル医療用AIの代替手法を提案する。
このエンジンは、医療用AIツールのセットを自律的に調整し、デプロイする。
適切なツール(97%)、正しい結論(93.6%)、完全(94%)、個人患者に有用な推奨(89.2%)を提示する能力が高いことを示す。
論文 参考訳(メタデータ) (2024-04-06T15:50:19Z) - Exploring Autonomous Agents through the Lens of Large Language Models: A Review [0.0]
大規模言語モデル(LLM)は人工知能を変革し、自律エージェントがさまざまなドメインで多様なタスクを実行できるようにしている。
彼らは多目的性、人的価値のアライメント、幻覚、評価といった課題に直面している。
AgentBench、WebArena、ToolLLMといった評価プラットフォームは、複雑なシナリオでこれらのエージェントを評価する堅牢な方法を提供します。
論文 参考訳(メタデータ) (2024-04-05T22:59:02Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
医療マルチモーダル大言語モデル(Med-MLLM)を評価するための新しいベンチマークであるAsclepiusを紹介する。
Asclepiusは、異なる医療専門性と異なる診断能力の観点から、モデル能力の厳密かつ包括的に評価する。
また、6つのMed-MLLMの詳細な分析を行い、5人の専門家と比較した。
論文 参考訳(メタデータ) (2024-02-17T08:04:23Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [55.30328162764292]
Chemist-Xは、化学合成における反応条件最適化(RCO)タスクを自動化する包括的なAIエージェントである。
このエージェントは、検索強化世代(RAG)技術とAI制御のウェットラブ実験を実行する。
我々の自動ウェットラブ実験の結果は、LLMが制御するエンドツーエンドの操作を、ロボットに人間がいない状態で行うことで達成され、Chemist-Xの自動運転実験における能力が証明された。
論文 参考訳(メタデータ) (2023-11-16T01:21:33Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
大規模言語モデル(LLM)は、人工知能(AGI)の潜在的な火花と見なされる
まず、エージェントの概念を哲学的起源からAI開発まで追跡し、LLMがエージェントに適した基盤である理由を説明します。
単一エージェントシナリオ,マルチエージェントシナリオ,ヒューマンエージェント協調の3つの側面において,LLMベースのエージェントの広範な応用について検討する。
論文 参考訳(メタデータ) (2023-09-14T17:12:03Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
医療人工知能(MAGI)は、1つの基礎モデルで異なる医療課題を解くことができる。
我々は、Micical-knedge-enhanced mulTimOdal pretRaining (motoR)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-26T01:26:19Z) - Management and Detection System for Medical Surgical Equipment [68.8204255655161]
保存外科体 (Retained surgical body, RSB) は、外科手術後に患者の体内に残された異物である。
本稿では、我々が設計空間を探索し、実現可能なソリューションを定義し、最先端のサイバー物理システムをシミュレートし、検証し、検証するために行った技術プロセスについて述べる。
論文 参考訳(メタデータ) (2022-11-04T10:19:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。