論文の概要: Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents
- arxiv url: http://arxiv.org/abs/2405.02957v3
- Date: Fri, 17 Jan 2025 11:59:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-20 13:57:53.451998
- Title: Agent Hospital: A Simulacrum of Hospital with Evolvable Medical Agents
- Title(参考訳): エージェント・インスティテュート : 進化可能な医療エージェントを持つ病院のシミュレーション
- Authors: Junkai Li, Yunghwei Lai, Weitao Li, Jingyi Ren, Meng Zhang, Xinhui Kang, Siyu Wang, Peng Li, Ya-Qin Zhang, Weizhi Ma, Yang Liu,
- Abstract要約: 大規模言語モデル(LLM)は、医療人工知能(AI)における新しい技術革新の波を引き起こした
治療過程全体をシミュレートした,エージェント病院という病院のシミュラムを紹介した。
シラクラム内では、医師は、手動でトレーニングデータをラベル付けすることなく、多数の患者エージェントを治療することで、進化することができる。
- 参考スコア(独自算出の注目度): 19.721008909326024
- License:
- Abstract: The recent rapid development of large language models (LLMs) has sparked a new wave of technological revolution in medical artificial intelligence (AI). While LLMs are designed to understand and generate text like a human, autonomous agents that utilize LLMs as their "brain" have exhibited capabilities beyond text processing such as planning, reflection, and using tools by enabling their "bodies" to interact with the environment. We introduce a simulacrum of hospital called Agent Hospital that simulates the entire process of treating illness, in which all patients, nurses, and doctors are LLM-powered autonomous agents. Within the simulacrum, doctor agents are able to evolve by treating a large number of patient agents without the need to label training data manually. After treating tens of thousands of patient agents in the simulacrum (human doctors may take several years in the real world), the evolved doctor agents outperform state-of-the-art medical agent methods on the MedQA benchmark comprising US Medical Licensing Examination (USMLE) test questions. Our methods of simulacrum construction and agent evolution have the potential in benefiting a broad range of applications beyond medical AI.
- Abstract(参考訳): 近年の大規模言語モデル(LLM)の急速な発展は、医療人工知能(AI)における新しい技術革新の波を引き起こしている。
LLMは人間のようにテキストを理解・生成するように設計されているが、LSMを「脳」として利用する自律エージェントは「身体」が環境と対話できるようにすることで、計画、反射、ツールの使用といったテキスト処理以上の能力を発揮している。
我々は, 患者, 看護師, 医師がLDMを駆使した自律型エージェントである, 疾患治療の全過程をシミュレートする, エージェント病院という病院のシミュラクルを紹介した。
シラクラム内では、医師は、手動でトレーニングデータをラベル付けすることなく、多数の患者エージェントを治療することで、進化することができる。
シミュラクルムで何万もの患者エージェント(人間の医師は実世界で数年かかるかもしれない)を治療した後、進化した医師エージェントは、USMLE(US Medical Licensing Examination)テスト質問を含むMedQAベンチマークで最先端の医療エージェントメソッドより優れている。
我々のシミュララム構築とエージェント進化の方法は、医療用AI以外の幅広い応用に利益をもたらす可能性がある。
関連論文リスト
- MedAide: Towards an Omni Medical Aide via Specialized LLM-based Multi-Agent Collaboration [16.062646854608094]
大規模言語モデル(LLM)による対話システムは、現在医療分野において潜在的に有望であることを示している。
本稿では,医療専門サービスのためのオムニ・メディカル・マルチエージェント・コラボレーション・フレームワークであるMedAideを提案する。
論文 参考訳(メタデータ) (2024-10-16T13:10:27Z) - AIPatient: Simulating Patients with EHRs and LLM Powered Agentic Workflow [33.8495939261319]
本稿では,AIPatient Knowledge Graph (AIPatient KG) を入力とし,生成バックボーンとしてReasoning Retrieval-Augmented Generation (RAG) を開発した。
Reasoning RAGは、検索、KGクエリ生成、抽象化、チェッカー、書き直し、要約を含むタスクにまたがる6つのLLMエージェントを活用する。
ANOVA F-value 0.6126, p>0.1, ANOVA F-value 0.782, p>0.1, ANOVA F-value 0.782, p>0.1, ANOVA F-value 0.6126, p>0.1)。
論文 参考訳(メタデータ) (2024-09-27T17:17:15Z) - MDAgents: An Adaptive Collaboration of LLMs for Medical Decision-Making [45.74980058831342]
MDAgents(Medical Decision-making Agents)と呼ばれる新しいマルチエージェントフレームワークを導入する。
割り当てられた単独またはグループの共同作業構造は、実際の医療決定過程をエミュレートして、手元にある医療タスクに合わせて調整される。
MDAgentsは医療知識の理解を必要とするタスクに関する10のベンチマークのうち7つのベンチマークで最高のパフォーマンスを達成した。
論文 参考訳(メタデータ) (2024-04-22T06:30:05Z) - Autonomous Artificial Intelligence Agents for Clinical Decision Making in Oncology [0.6397820821509177]
本稿では,大規模言語モデル(LLM)を中心的推論エンジンとして活用する,マルチモーダル医療用AIの代替手法を提案する。
このエンジンは、医療用AIツールのセットを自律的に調整し、デプロイする。
適切なツール(97%)、正しい結論(93.6%)、完全(94%)、個人患者に有用な推奨(89.2%)を提示する能力が高いことを示す。
論文 参考訳(メタデータ) (2024-04-06T15:50:19Z) - Asclepius: A Spectrum Evaluation Benchmark for Medical Multi-Modal Large
Language Models [59.60384461302662]
医療マルチモーダル大言語モデル(Med-MLLM)を評価するための新しいベンチマークであるAsclepiusを紹介する。
Asclepiusは、異なる医療専門性と異なる診断能力の観点から、モデル能力の厳密かつ包括的に評価する。
また、6つのMed-MLLMの詳細な分析を行い、5人の専門家と比較した。
論文 参考訳(メタデータ) (2024-02-17T08:04:23Z) - AI Hospital: Benchmarking Large Language Models in a Multi-agent Medical Interaction Simulator [69.51568871044454]
我々は,emphDoctorをプレイヤとして,NPC間の動的医療相互作用をシミュレーションするフレームワークであるtextbfAI Hospitalを紹介した。
この設定は臨床シナリオにおけるLCMの現実的な評価を可能にする。
高品質な中国の医療記録とNPCを利用したマルチビュー医療評価ベンチマークを開発した。
論文 参考訳(メタデータ) (2024-02-15T06:46:48Z) - Large Language Model Distilling Medication Recommendation Model [61.89754499292561]
大規模言語モデル(LLM)の強力な意味理解と入力非依存特性を利用する。
本研究は, LLMを用いて既存の薬剤推奨手法を変換することを目的としている。
これを軽減するため,LLMの習熟度をよりコンパクトなモデルに伝達する機能レベルの知識蒸留技術を開発した。
論文 参考訳(メタデータ) (2024-02-05T08:25:22Z) - Towards Medical Artificial General Intelligence via Knowledge-Enhanced
Multimodal Pretraining [121.89793208683625]
医療人工知能(MAGI)は、1つの基礎モデルで異なる医療課題を解くことができる。
我々は、Micical-knedge-enhanced mulTimOdal pretRaining (motoR)と呼ばれる新しいパラダイムを提案する。
論文 参考訳(メタデータ) (2023-04-26T01:26:19Z) - Management and Detection System for Medical Surgical Equipment [68.8204255655161]
保存外科体 (Retained surgical body, RSB) は、外科手術後に患者の体内に残された異物である。
本稿では、我々が設計空間を探索し、実現可能なソリューションを定義し、最先端のサイバー物理システムをシミュレートし、検証し、検証するために行った技術プロセスについて述べる。
論文 参考訳(メタデータ) (2022-11-04T10:19:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。