論文の概要: Causal K-Means Clustering
- arxiv url: http://arxiv.org/abs/2405.03083v1
- Date: Sun, 5 May 2024 23:59:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 15:14:27.615547
- Title: Causal K-Means Clustering
- Title(参考訳): 因果K平均クラスタリング
- Authors: Kwangho Kim, Jisu Kim, Edward H. Kennedy,
- Abstract要約: Causal k-Means Clusteringは、広く使われているk-means Clusteringアルゴリズムを利用して、未知の部分群構造を明らかにする。
既成のアルゴリズムを用いて簡易かつ容易に実装可能なプラグイン推定器を提案する。
提案手法は,複数の治療レベルを有する近代的な結果研究に特に有用である。
- 参考スコア(独自算出の注目度): 5.087519744951637
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causal effects are often characterized with population summaries. These might provide an incomplete picture when there are heterogeneous treatment effects across subgroups. Since the subgroup structure is typically unknown, it is more challenging to identify and evaluate subgroup effects than population effects. We propose a new solution to this problem: Causal k-Means Clustering, which harnesses the widely-used k-means clustering algorithm to uncover the unknown subgroup structure. Our problem differs significantly from the conventional clustering setup since the variables to be clustered are unknown counterfactual functions. We present a plug-in estimator which is simple and readily implementable using off-the-shelf algorithms, and study its rate of convergence. We also develop a new bias-corrected estimator based on nonparametric efficiency theory and double machine learning, and show that this estimator achieves fast root-n rates and asymptotic normality in large nonparametric models. Our proposed methods are especially useful for modern outcome-wide studies with multiple treatment levels. Further, our framework is extensible to clustering with generic pseudo-outcomes, such as partially observed outcomes or otherwise unknown functions. Finally, we explore finite sample properties via simulation, and illustrate the proposed methods in a study of treatment programs for adolescent substance abuse.
- Abstract(参考訳): 因果効果は、しばしば人口の要約によって特徴づけられる。
これらは、サブグループ間で不均一な治療効果があるときに不完全な画像を与えるかもしれない。
サブグループ構造は一般に不明であるため、集団効果よりもサブグループ効果の同定と評価が困難である。
この問題に対する新しい解決策を提案する: Causal k-Means Clusteringは、広く使われているk-means Clusteringアルゴリズムを利用して、未知の部分群構造を明らかにする。
我々の問題は、クラスタ化すべき変数が未知の偽関数であるため、従来のクラスタリング設定とは大きく異なる。
本稿では,既製のアルゴリズムを用いて簡易かつ容易に実装可能なプラグイン推定器を提案し,その収束率について検討する。
また、非パラメトリック効率理論と二重機械学習に基づく新しいバイアス補正推定器を開発し、この推定器が大規模非パラメトリックモデルにおいて高速なルート-n速度と漸近正規性を達成することを示す。
提案手法は,複数の治療レベルを有する近代的な結果研究に特に有用である。
さらに,我々のフレームワークは,部分的に観察された結果や未知の機能など,一般的な擬似アウトカムによるクラスタリングに拡張可能である。
最後に, シミュレーションによる有限標本特性の探索を行い, 青年期物質乱用に対する治療プログラムの研究において提案手法について述べる。
関連論文リスト
- Hierarchical and Density-based Causal Clustering [6.082022112101251]
本稿では,既成のアルゴリズムを用いて簡易かつ容易に実装可能なプラグイン推定器を提案する。
さらに,それらの収束率について検討し,因果クラスタリングの付加コストが基本的に結果回帰関数の推定誤差であることを示す。
論文 参考訳(メタデータ) (2024-11-02T14:01:04Z) - Interpretable Clustering with the Distinguishability Criterion [0.4419843514606336]
本稿では,特定クラスタの分離可能性の定量化と推定クラスタ構成の検証を行うために,分散可能性基準と呼ばれるグローバルな基準を提案する。
本稿では、分散可能性基準と多くの一般的なクラスタリング手順を統合した損失関数に基づく計算フレームワークを提案する。
シミュレーション研究および実データアプリケーションに基づく包括的データ解析の結果とともに,これらの新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-04-24T16:38:15Z) - Statistical Performance Guarantee for Subgroup Identification with
Generic Machine Learning [1.0878040851638]
我々は、ジェネリックMLアルゴリズム(GATES)によりソートされたグループ平均処理効果を推定するための一様信頼バンドを開発する。
我々は,後期前立腺癌の臨床試験を解析し,例外的反応の比率が比較的高いことを見出した。
論文 参考訳(メタデータ) (2023-10-12T01:41:47Z) - Learning Linear Causal Representations from Interventions under General
Nonlinear Mixing [52.66151568785088]
介入対象にアクセスできることなく、未知の単一ノード介入を考慮し、強い識別可能性を示す。
これは、ディープニューラルネットワークの埋め込みに対する非ペアの介入による因果識別性の最初の例である。
論文 参考訳(メタデータ) (2023-06-04T02:32:12Z) - Compound Batch Normalization for Long-tailed Image Classification [77.42829178064807]
本稿では,ガウス混合に基づく複合バッチ正規化法を提案する。
機能空間をより包括的にモデル化し、ヘッドクラスの優位性を減らすことができる。
提案手法は,画像分類における既存の手法よりも優れている。
論文 参考訳(メタデータ) (2022-12-02T07:31:39Z) - Unified Multi-View Orthonormal Non-Negative Graph Based Clustering
Framework [74.25493157757943]
我々は,非負の特徴特性を活用し,多視点情報を統合された共同学習フレームワークに組み込む,新しいクラスタリングモデルを定式化する。
また、深層機能に基づいたクラスタリングデータに対するマルチモデル非負グラフベースのアプローチを初めて検討する。
論文 参考訳(メタデータ) (2022-11-03T08:18:27Z) - Lattice-Based Methods Surpass Sum-of-Squares in Clustering [98.46302040220395]
クラスタリングは教師なし学習における基本的なプリミティブである。
最近の研究は、低次手法のクラスに対する低い境界を確立している。
意外なことに、この特定のクラスタリングモデルのtextitdoesは、統計的-計算的ギャップを示さない。
論文 参考訳(メタデータ) (2021-12-07T18:50:17Z) - Binary Classification of Gaussian Mixtures: Abundance of Support
Vectors, Benign Overfitting and Regularization [39.35822033674126]
生成ガウス混合モデルに基づく二項線形分類について検討する。
後者の分類誤差に関する新しい非漸近境界を導出する。
この結果は, 確率が一定である雑音モデルに拡張される。
論文 参考訳(メタデータ) (2020-11-18T07:59:55Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Robust Recursive Partitioning for Heterogeneous Treatment Effects with
Uncertainty Quantification [84.53697297858146]
治療効果のサブグループ分析は、医療から公共政策、レコメンデーターシステムへの応用において重要な役割を担っている。
サブグループ分析の現在の手法のほとんどは、個別化処理効果(ITE)を推定するための特定のアルゴリズムから始まる。
本稿では、これらの弱点に対処する新しい部分群解析法R2Pを開発する。
論文 参考訳(メタデータ) (2020-06-14T14:50:02Z) - Statistical power for cluster analysis [0.0]
クラスターアルゴリズムは、生物医学研究でますます人気がある。
シミュレーションにより,共通解析におけるパワーと精度を推定する。
我々は,大規模なサブグループ分離が期待される場合にのみ,クラスタ分析を適用することを推奨する。
論文 参考訳(メタデータ) (2020-03-01T02:43:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。