論文の概要: Deep Learning-based Point Cloud Registration for Augmented Reality-guided Surgery
- arxiv url: http://arxiv.org/abs/2405.03314v1
- Date: Mon, 6 May 2024 09:41:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 14:15:50.987353
- Title: Deep Learning-based Point Cloud Registration for Augmented Reality-guided Surgery
- Title(参考訳): 拡張現実誘導手術のための深層学習に基づくポイントクラウド登録
- Authors: Maximilian Weber, Daniel Wild, Jens Kleesiek, Jan Egger, Christina Gsaxner,
- Abstract要約: この研究は、画像誘導手術へのARの統合と、ポイントクラウド登録のためのディープラーニングの利用という、2つの研究トレンドの交差点を探索する。
本研究の目的は,拡張現実誘導手術における深層学習に基づくポイントクラウド登録手法の適用可能性を評価することである。
- 参考スコア(独自算出の注目度): 2.033402450638833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point cloud registration aligns 3D point clouds using spatial transformations. It is an important task in computer vision, with applications in areas such as augmented reality (AR) and medical imaging. This work explores the intersection of two research trends: the integration of AR into image-guided surgery and the use of deep learning for point cloud registration. The main objective is to evaluate the feasibility of applying deep learning-based point cloud registration methods for image-to-patient registration in augmented reality-guided surgery. We created a dataset of point clouds from medical imaging and corresponding point clouds captured with a popular AR device, the HoloLens 2. We evaluate three well-established deep learning models in registering these data pairs. While we find that some deep learning methods show promise, we show that a conventional registration pipeline still outperforms them on our challenging dataset.
- Abstract(参考訳): 点雲登録は空間変換を用いて3次元点雲を整列させる。
これはコンピュータビジョンにおいて重要なタスクであり、拡張現実(AR)や医療画像などの分野で応用されている。
この研究は、画像誘導手術へのARの統合と、ポイントクラウド登録のためのディープラーニングの利用という、2つの研究トレンドの交差点を探索する。
本研究の目的は,拡張現実誘導手術における深層学習に基づくポイントクラウド登録手法の適用可能性を評価することである。
医用画像とそれに対応する点雲から、人気のあるARデバイスであるHoloLens 2.0でキャプチャした点雲のデータセットを作成しました。
これらのデータペアを登録する際に、確立された3つのディープラーニングモデルを評価する。
ディープラーニングの手法には将来性を示すものもありますが、従来の登録パイプラインでは、難しいデータセットでは依然としてパフォーマンスが優れています。
関連論文リスト
- Deep Learning for 3D Point Cloud Enhancement: A Survey [7.482216242644069]
本稿では,深層学習に基づくポイントクラウド強化手法に関する総合的な調査を行う。
ポイントクラウドの強化、すなわちクリーンなデータを達成するためのデノイング、見えないデータを復元するための完了、高密度なデータを得るためのアップサンプリングの3つの主要な視点をカバーしている。
本調査では,最近の最先端手法の新しい分類法と,標準ベンチマークの体系的実験結果について述べる。
論文 参考訳(メタデータ) (2024-10-30T15:07:06Z) - PointRegGPT: Boosting 3D Point Cloud Registration using Generative Point-Cloud Pairs for Training [90.06520673092702]
生成点クラウドペアを用いた3Dポイントクラウドの登録をトレーニングのために促進するPointRegGPTを提案する。
我々の知る限り、これは屋内のクラウド登録のためのリアルなデータ生成を探求する最初の生成的アプローチである。
論文 参考訳(メタデータ) (2024-07-19T06:29:57Z) - HVDistill: Transferring Knowledge from Images to Point Clouds via Unsupervised Hybrid-View Distillation [106.09886920774002]
本稿では,HVDistillと呼ばれるハイブリッドビューに基づく知識蒸留フレームワークを提案する。
提案手法は,スクラッチからトレーニングしたベースラインに対して一貫した改善を実現し,既存のスキームを大幅に上回っている。
論文 参考訳(メタデータ) (2024-03-18T14:18:08Z) - Deep Learning-based 3D Point Cloud Classification: A Systematic Survey
and Outlook [12.014972829130764]
本稿では,ポイントクラウドの獲得,特徴,課題を紹介する。
我々は3Dデータ表現、ストレージフォーマット、およびポイントクラウド分類のための一般的に使用されるデータセットについてレビューする。
論文 参考訳(メタデータ) (2023-11-05T09:28:43Z) - Explore In-Context Learning for 3D Point Cloud Understanding [71.20912026561484]
我々は,特に3Dポイントクラウドにおけるコンテキスト内学習のために設計された,ポイント・イン・コンテキストという新しいフレームワークを紹介した。
一般点サンプリング演算子とタンデムで協調して動作するように慎重に設計したJoint Smplingモジュールを提案する。
提案手法の汎用性と適応性を検証するため,幅広いタスクを扱うための広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-06-14T17:53:21Z) - Ponder: Point Cloud Pre-training via Neural Rendering [93.34522605321514]
本稿では,識別可能なニューラルエンコーダによる点雲表現の自己教師型学習手法を提案する。
学習したポイントクラウドは、3D検出やセグメンテーションといったハイレベルなレンダリングタスクだけでなく、3D再構成や画像レンダリングといった低レベルなタスクを含む、さまざまなダウンストリームタスクに簡単に統合できる。
論文 参考訳(メタデータ) (2022-12-31T08:58:39Z) - Learning-based Point Cloud Registration for 6D Object Pose Estimation in
the Real World [55.7340077183072]
我々は、ポイントクラウドデータからオブジェクトの6Dポーズを推定するタスクに取り組む。
この課題に対処する最近の学習ベースのアプローチは、合成データセットにおいて大きな成功を収めている。
これらの障害の原因を分析し、ソースとターゲットポイントの雲の特徴分布の違いに遡る。
論文 参考訳(メタデータ) (2022-03-29T07:55:04Z) - Review: deep learning on 3D point clouds [9.73176900969663]
ポイントクラウドは3D表現のための最も重要なデータフォーマットの1つである。
ディープラーニングは現在、コンピュータビジョンにおけるデータ処理の最も強力なツールです。
論文 参考訳(メタデータ) (2020-01-17T12:55:23Z) - Deep Learning for 3D Point Clouds: A Survey [58.954684611055]
本稿では,ポイントクラウドにおけるディープラーニング手法の最近の進歩を概観する。
3D形状分類、3Dオブジェクトの検出と追跡、3Dポイントクラウドセグメンテーションを含む3つの主要なタスクをカバーしている。
また、いくつかの公開データセットで比較結果を提示する。
論文 参考訳(メタデータ) (2019-12-27T09:15:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。