論文の概要: GLIP: Electromagnetic Field Exposure Map Completion by Deep Generative Networks
- arxiv url: http://arxiv.org/abs/2405.03384v1
- Date: Mon, 6 May 2024 11:43:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 13:56:21.489001
- Title: GLIP: Electromagnetic Field Exposure Map Completion by Deep Generative Networks
- Title(参考訳): GLIP:深部生成ネットワークによる電磁界露光マップの完成
- Authors: Mohammed Mallik, Davy P. Gaillot, Laurent Clavier,
- Abstract要約: GANのジェネレータネットワークのみを用いてEMF露光マップを再構成する手法を提案する。
このアプローチでは、センサデータからLIP(Local Image Prior)として、深層畳み込み生成ネットワークによってキャプチャされる。
実験結果から, センサデータのみを使用できたとしても, 正確な推定が可能であることがわかった。
- 参考スコア(独自算出の注目度): 0.6144680854063939
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In Spectrum cartography (SC), the generation of exposure maps for radio frequency electromagnetic fields (RF-EMF) spans dimensions of frequency, space, and time, which relies on a sparse collection of sensor data, posing a challenging ill-posed inverse problem. Cartography methods based on models integrate designed priors, such as sparsity and low-rank structures, to refine the solution of this inverse problem. In our previous work, EMF exposure map reconstruction was achieved by Generative Adversarial Networks (GANs) where physical laws or structural constraints were employed as a prior, but they require a large amount of labeled data or simulated full maps for training to produce efficient results. In this paper, we present a method to reconstruct EMF exposure maps using only the generator network in GANs which does not require explicit training, thus overcoming the limitations of GANs, such as using reference full exposure maps. This approach uses a prior from sensor data as Local Image Prior (LIP) captured by deep convolutional generative networks independent of learning the network parameters from images in an urban environment. Experimental results show that, even when only sparse sensor data are available, our method can produce accurate estimates.
- Abstract(参考訳): スペクトル地図 (SC) では、高周波電磁場(RF-EMF)の露光マップの生成は、周波数、空間、時間の次元にまたがっており、センサーデータの希少な収集に依存しており、不適切な逆問題を引き起こしている。
モデルに基づくカルトグラフィー手法は、この逆問題の解を洗練させるために、疎度や低ランク構造といった設計済みの先行概念を統合する。
前報では, 物理法則や構造制約を事前に用いたGAN(Generative Adversarial Networks)を用いてEMF露光マップの再構成を行った。
本稿では,GINのジェネレータネットワークのみを用いて,明示的なトレーニングを必要としないEMF露光マップを再構築し,参照フル露光マップなどのGANの限界を克服する手法を提案する。
このアプローチでは,都市環境における画像からネットワークパラメータを学習することなく,深層畳み込み生成ネットワークによってキャプチャされたローカル画像優先(LIP)としてセンサデータから先行する手法を用いる。
実験結果から, センサデータのみを使用できたとしても, 正確な推定が可能であることがわかった。
関連論文リスト
- Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1 [51.404644401997736]
本稿では、畳み込みニューラルネットワークを用いて偏光SAR画像のスペックルを除去するための完全なフレームワークを提案する。
実験により,提案手法はスペックル低減と分解能保存の両方において例外的な結果をもたらすことが示された。
論文 参考訳(メタデータ) (2024-08-28T10:07:17Z) - Diffusion-based Data Augmentation for Object Counting Problems [62.63346162144445]
拡散モデルを用いて広範なトレーニングデータを生成するパイプラインを開発する。
拡散モデルを用いて位置ドットマップ上に条件付き画像を生成するのはこれが初めてである。
提案した拡散モデルにおけるカウント損失は,位置ドットマップと生成した群集画像との差を効果的に最小化する。
論文 参考訳(メタデータ) (2024-01-25T07:28:22Z) - Inpainting Normal Maps for Lightstage data [3.1002416427168304]
本研究では,GAN(Generative Adversarial Network)を用いた正規地図の塗装手法を提案する。
提案手法は,弓ネクタイ型ジェネレータネットワークと識別器ネットワークを併用し,トレーニングフェーズを交互に行うことによって,従来の一般的な画像塗装技術を拡張した。
提案手法は,高性能でリアルな塗布された正規地図を効果的に生成し,性能評価に適していることが示唆された。
論文 参考訳(メタデータ) (2024-01-16T03:59:07Z) - Radio Map Estimation -- An Open Dataset with Directive Transmitter
Antennas and Initial Experiments [49.61405888107356]
実世界の現実的な都市地図とオープンなデータソースからの航空画像とともに、シミュレーションされた経路損失無線マップのデータセットをリリースする。
モデルアーキテクチャ,入力特徴設計,航空画像からの無線マップの推定に関する実験を行った。
論文 参考訳(メタデータ) (2024-01-12T14:56:45Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - A Deep Learning Approach for SAR Tomographic Imaging of Forested Areas [10.477070348391079]
我々は,1つのフィードフォワードパスでトモグラフィインバージョンを実行するために,軽量ニューラルネットワークをトレーニング可能であることを示す。
我々は、シミュレーションデータを用いてエンコーダ・デコーダネットワークを訓練し、実LバンドとPバンドのデータに基づいてその手法を検証する。
論文 参考訳(メタデータ) (2023-01-20T14:34:03Z) - Near-filed SAR Image Restoration with Deep Learning Inverse Technique: A
Preliminary Study [5.489791364472879]
近接場合成開口レーダ(SAR)は、ターゲットの散乱分布ホットスポットの高解像度画像を提供する。
一方、撮像の結果は、サイドローブ、クラッタ、ノイズから必然的に劣化する。
イメージを復元するために、現在の手法では、例えば、点拡散関数(PSF)は空間的に一貫したものであり、ターゲットはスパース点散乱器などで構成されている。
我々は、分解モデルを空間的に可変な複素畳み込みモデルに再構成し、近接場SARのシステム応答を考慮した。
モデルに基づくディープラーニングネットワークは、復元するために設計されている
論文 参考訳(メタデータ) (2022-11-28T01:28:33Z) - Toward Data-Driven STAP Radar [23.333816677794115]
我々は、時空間適応処理(STAP)レーダーに対するデータ駆動アプローチを特徴付ける。
所定領域に可変強度のターゲットをランダムに配置することにより、受信レーダ信号の豊富なサンプルデータセットを生成する。
この領域内の各データサンプルに対して、ビームフォーマの出力パワーのレンジ、方位、および上昇のヒートマップテンソルを生成する。
空中に浮かぶシナリオでは、動くレーダーは、ビデオに似た、これらのタイムインデクシングされたイメージスタックのシーケンスを生成する。
論文 参考訳(メタデータ) (2022-01-26T02:28:13Z) - Learning Neural Light Fields with Ray-Space Embedding Networks [51.88457861982689]
我々は、コンパクトで、光線に沿った統合放射率を直接予測する新しいニューラル光場表現を提案する。
提案手法は,Stanford Light Field データセットのような,高密度の前方向きデータセットの最先端品質を実現する。
論文 参考訳(メタデータ) (2021-12-02T18:59:51Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
空間、時間、周波数領域にわたる無線スペクトルのモニタリングは、5Gと6G以上の通信技術において重要な特徴となる。
本稿では,空間領域全体にわたる不規則分散計測を補間するGAN(Generative Adversarial Network)機械学習モデルを提案する。
論文 参考訳(メタデータ) (2021-11-23T22:25:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。