論文の概要: Low-light Object Detection
- arxiv url: http://arxiv.org/abs/2405.03519v1
- Date: Mon, 6 May 2024 14:36:01 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 13:26:55.512681
- Title: Low-light Object Detection
- Title(参考訳): 低照度物体検出
- Authors: Pengpeng Li, Haowei Gu, Yang Yang,
- Abstract要約: 提案手法は,CO-DETRモデルに基づく。
テストデータに様々な拡張技術を用いて,複数の予測結果を生成する。
- 参考スコア(独自算出の注目度): 4.387227478570902
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this competition we employed a model fusion approach to achieve object detection results close to those of real images. Our method is based on the CO-DETR model, which was trained on two sets of data: one containing images under dark conditions and another containing images enhanced with low-light conditions. We used various enhancement techniques on the test data to generate multiple sets of prediction results. Finally, we applied a clustering aggregation method guided by IoU thresholds to select the optimal results.
- Abstract(参考訳): このコンペでは,実画像に近い物体検出結果を得るために,モデル融合手法を用いた。
提案手法は,暗黒条件下での画像を含むデータと,低照度で強調された画像を含む2種類のデータに基づいて訓練されたCO-DETRモデルに基づく。
テストデータに様々な拡張技術を用いて,複数の予測結果を生成する。
最後に、IoU閾値で導かれたクラスタリングアグリゲーション手法を適用し、最適な結果を選択する。
関連論文リスト
- Enhance Image Classification via Inter-Class Image Mixup with Diffusion Model [80.61157097223058]
画像分類性能を高めるための一般的な戦略は、T2Iモデルによって生成された合成画像でトレーニングセットを増強することである。
本研究では,既存のデータ拡張技術の欠点について検討する。
Diff-Mixと呼ばれる革新的なクラス間データ拡張手法を導入する。
論文 参考訳(メタデータ) (2024-03-28T17:23:45Z) - SeNM-VAE: Semi-Supervised Noise Modeling with Hierarchical Variational Autoencoder [13.453138169497903]
SeNM-VAEは、ペアとアンペアの両方のデータセットを利用して、現実的な劣化データを生成する半教師付きノイズモデリング手法である。
実世界の画像認識と超分解能タスクのためのペアトレーニングサンプルを生成するために,本手法を用いた。
提案手法は, 合成劣化画像の品質を, 他の不対とペアのノイズモデリング法と比較して向上させる。
論文 参考訳(メタデータ) (2024-03-26T09:03:40Z) - MLF-DET: Multi-Level Fusion for Cross-Modal 3D Object Detection [54.52102265418295]
MLF-DETと呼ばれる,高性能なクロスモーダル3DオブジェクトDrectionのための,新規かつ効果的なマルチレベルフュージョンネットワークを提案する。
特徴レベルの融合では、マルチスケールのボクセル特徴と画像の特徴を密集したマルチスケールのボクセル画像融合(MVI)モジュールを提示する。
本稿では,画像のセマンティクスを利用して検出候補の信頼度を補正するFCR(Feature-cued Confidence Rectification)モジュールを提案する。
論文 参考訳(メタデータ) (2023-07-18T11:26:02Z) - Improving Image Clustering through Sample Ranking and Its Application to
remote--sensing images [14.531733039462058]
本稿では,現在クラスタに属するクラスタの信頼性に基づいて,各クラスタ内のサンプルをランク付けする新しい手法を提案する。
そこで,本研究では,人口密度の密集した地域にあるか否かに基づいて,現在のクラスタに属するサンプルの確率を計算する手法を開発した。
本手法はリモートセンシング画像に効果的に適用可能であることを示す。
論文 参考訳(メタデータ) (2022-09-26T12:10:02Z) - Evaluating object detector ensembles for improving the robustness of
artifact detection in endoscopic video streams [0.9236074230806579]
アンサンブル深層学習法を用いて2つの単段検出器の予測を合成する。
このアンサンブル戦略により、個々のモデルの堅牢性は、リアルタイムの能力を損なうことなく向上できるようになりました。
論文 参考訳(メタデータ) (2022-06-15T15:06:07Z) - ObjectFormer for Image Manipulation Detection and Localization [118.89882740099137]
画像操作の検出とローカライズを行うObjectFormerを提案する。
画像の高周波特徴を抽出し,マルチモーダルパッチの埋め込みとしてRGB特徴と組み合わせる。
各種データセットについて広範な実験を行い,提案手法の有効性を検証した。
論文 参考訳(メタデータ) (2022-03-28T12:27:34Z) - One-Shot Adaptation of GAN in Just One CLIP [51.188396199083336]
本稿では,CLIP空間を統一した単一ショットGAN適応方式を提案する。
具体的には、CLIP誘導潜在最適化を用いて、ソースジェネレータ内の参照画像検索という2段階のトレーニング戦略を採用する。
対象のテクスチャで多様な出力を生成し,質的かつ定量的にベースラインモデルより優れていることを示す。
論文 参考訳(メタデータ) (2022-03-17T13:03:06Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
本稿では,ディープニューラルネットワークを用いた単眼画像とレーダ点の融合により,より正確な深度推定を実現する可能性を検討する。
レーダ測定で発生するノイズが,既存の融合法の適用を妨げている主要な理由の1つであることが判明した。
実験はnuScenesデータセット上で行われ、カメラ、レーダー、LiDARの記録を様々な場面と気象条件で記録する最初のデータセットの1つである。
論文 参考訳(メタデータ) (2020-09-30T19:01:33Z) - Co-Attention for Conditioned Image Matching [91.43244337264454]
照明, 視点, コンテキスト, 素材に大きな変化がある場合, 野生のイメージペア間の対応性を決定するための新しい手法を提案する。
他のアプローチでは、イメージを個別に扱うことで、画像間の対応を見出すが、その代わりに、画像間の差異を暗黙的に考慮するよう、両画像に条件を付ける。
論文 参考訳(メタデータ) (2020-07-16T17:32:00Z) - Enhancing Few-Shot Image Classification with Unlabelled Examples [18.03136114355549]
画像分類性能を向上させるために,非ラベルインスタンスを用いたトランスダクティブなメタラーニング手法を開発した。
提案手法は,正規化ニューラルアダプティブ特徴抽出器を組み合わせることで,非ラベルデータを用いたテスト時間分類精度の向上を実現する。
論文 参考訳(メタデータ) (2020-06-17T05:42:47Z) - Contrast-weighted Dictionary Learning Based Saliency Detection for
Remote Sensing Images [3.338193485961624]
本稿では,リモートセンシング画像に対するコントラスト重み付き辞書学習(CDL)に基づく新しい唾液度検出モデルを提案する。
具体的には、正と負のサンプルから正と非正の原子を学習し、識別辞書を構築する。
提案手法を用いて, 識別辞書に基づいて, 種々の相補性マップを生成する。
論文 参考訳(メタデータ) (2020-04-06T06:49:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。