A short Survey: Exploring knowledge graph-based neural-symbolic system from application perspective
- URL: http://arxiv.org/abs/2405.03524v5
- Date: Tue, 18 Feb 2025 15:30:43 GMT
- Title: A short Survey: Exploring knowledge graph-based neural-symbolic system from application perspective
- Authors: Shenzhe Zhu, Shengxiang Sun,
- Abstract summary: achieving human-like reasoning and interpretability in AI systems remains a substantial challenge.
The Neural-Symbolic paradigm, which integrates neural networks with symbolic systems, presents a promising pathway toward more interpretable AI.
This paper explores recent advancements in neural-symbolic integration based on Knowledge Graphs.
- Score: 0.0
- License:
- Abstract: Advancements in Artificial Intelligence (AI) and deep neural networks have driven significant progress in vision and text processing. However, achieving human-like reasoning and interpretability in AI systems remains a substantial challenge. The Neural-Symbolic paradigm, which integrates neural networks with symbolic systems, presents a promising pathway toward more interpretable AI. Within this paradigm, Knowledge Graphs (KG) are crucial, offering a structured and dynamic method for representing knowledge through interconnected entities and relationships, typically as triples (subject, predicate, object). This paper explores recent advancements in neural-symbolic integration based on KG, examining how it supports integration in three categories: enhancing the reasoning and interpretability of neural networks with symbolic knowledge (Symbol for Neural), refining the completeness and accuracy of symbolic systems via neural network methodologies (Neural for Symbol), and facilitating their combined application in Hybrid Neural-Symbolic Integration. It highlights current trends and proposes future research directions in Neural-Symbolic AI.
Related papers
- Discovering Chunks in Neural Embeddings for Interpretability [53.80157905839065]
We propose leveraging the principle of chunking to interpret artificial neural population activities.
We first demonstrate this concept in recurrent neural networks (RNNs) trained on artificial sequences with imposed regularities.
We identify similar recurring embedding states corresponding to concepts in the input, with perturbations to these states activating or inhibiting the associated concepts.
arXiv Detail & Related papers (2025-02-03T20:30:46Z) - Neural-Symbolic Reasoning over Knowledge Graphs: A Survey from a Query Perspective [55.79507207292647]
Knowledge graph reasoning is pivotal in various domains such as data mining, artificial intelligence, the Web, and social sciences.
The rise of Neural AI marks a significant advancement, merging the robustness of deep learning with the precision of symbolic reasoning.
The advent of large language models (LLMs) has opened new frontiers in knowledge graph reasoning.
arXiv Detail & Related papers (2024-11-30T18:54:08Z) - Converging Paradigms: The Synergy of Symbolic and Connectionist AI in LLM-Empowered Autonomous Agents [55.63497537202751]
Article explores the convergence of connectionist and symbolic artificial intelligence (AI)
Traditionally, connectionist AI focuses on neural networks, while symbolic AI emphasizes symbolic representation and logic.
Recent advancements in large language models (LLMs) highlight the potential of connectionist architectures in handling human language as a form of symbols.
arXiv Detail & Related papers (2024-07-11T14:00:53Z) - Aligning Knowledge Graphs Provided by Humans and Generated from Neural Networks in Specific Tasks [5.791414814676125]
This paper develops an innovative method that enables neural networks to generate and utilize knowledge graphs.
Our approach eschews traditional dependencies on or word embedding models, mining concepts from neural networks and directly aligning them with human knowledge.
Experiments show that our method consistently captures network-generated concepts that align closely with human knowledge and can even uncover new, useful concepts not previously identified by humans.
arXiv Detail & Related papers (2024-04-23T20:33:17Z) - The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning [54.56905063752427]
Neuro-Symbolic AI (NeSy) holds promise to ensure the safe deployment of AI systems.
Existing pipelines that train the neural and symbolic components sequentially require extensive labelling.
New architecture, NeSyGPT, fine-tunes a vision-language foundation model to extract symbolic features from raw data.
arXiv Detail & Related papers (2024-02-02T20:33:14Z) - Emergence of Symbols in Neural Networks for Semantic Understanding and
Communication [8.156761369660096]
We propose a solution to endow neural networks with the ability to create symbols, understand semantics, and achieve communication.
SEA-net generates symbols that dynamically configure the network to perform specific tasks.
These symbols capture compositional semantic information that allows the system to acquire new functions purely by symbolic manipulation or communication.
arXiv Detail & Related papers (2023-04-13T10:13:00Z) - Towards Data-and Knowledge-Driven Artificial Intelligence: A Survey on Neuro-Symbolic Computing [73.0977635031713]
Neural-symbolic computing (NeSy) has been an active research area of Artificial Intelligence (AI) for many years.
NeSy shows promise of reconciling the advantages of reasoning and interpretability of symbolic representation and robust learning in neural networks.
arXiv Detail & Related papers (2022-10-28T04:38:10Z) - Knowledge-based Analogical Reasoning in Neuro-symbolic Latent Spaces [20.260546238369205]
We propose a framework that combines the pattern recognition abilities of neural networks with symbolic reasoning and background knowledge.
We take inspiration from the 'neural algorithmic reasoning' approach [DeepMind 2020] and use problem-specific background knowledge.
We test this on visual analogy problems in RAVENs Progressive Matrices, and achieve accuracy competitive with human performance.
arXiv Detail & Related papers (2022-09-19T04:03:20Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AI aims to combine interpretability of symbolic techniques with the ability of deep learning to learn from raw data.
We introduce Neuro-Symbolic Inductive Learner (NSIL), an approach that trains a general neural network to extract latent concepts from raw data.
NSIL learns expressive knowledge, solves computationally complex problems, and achieves state-of-the-art performance in terms of accuracy and data efficiency.
arXiv Detail & Related papers (2022-05-25T12:41:59Z) - Neural-Symbolic Integration for Interactive Learning and Conceptual
Grounding [1.14219428942199]
We propose neural-symbolic integration for abstract concept explanation and interactive learning.
Interaction with the user confirms or rejects a revision of the neural model.
The approach is illustrated using the Logic Network framework alongside Concept Activation Vectors and applied to a Conal Neural Network.
arXiv Detail & Related papers (2021-12-22T11:24:48Z) - Neurosymbolic AI: The 3rd Wave [1.14219428942199]
Concerns about trust, safety, interpretability and accountability of AI were raised by influential thinkers.
Many have identified the need for well-founded knowledge representation and reasoning to be integrated with deep learning.
Neural-symbolic computing has been an active area of research seeking to bring together robust learning in neural networks with reasoning and explainability.
arXiv Detail & Related papers (2020-12-10T18:31:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.