論文の概要: RepVGG-GELAN: Enhanced GELAN with VGG-STYLE ConvNets for Brain Tumour Detection
- arxiv url: http://arxiv.org/abs/2405.03541v1
- Date: Mon, 6 May 2024 15:02:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 13:26:55.492742
- Title: RepVGG-GELAN: Enhanced GELAN with VGG-STYLE ConvNets for Brain Tumour Detection
- Title(参考訳): RepVGG-GELAN:脳腫瘍検出のためのVGG-STYLE ConvNetによる拡張GELAN
- Authors: Thennarasi Balakrishnan, Sandeep Singh Sengar,
- Abstract要約: 本研究では,RepVGGにより拡張された新しいYOLOアーキテクチャであるRepVGG-GELANを提案する。
RepVGG-GELANは、RepVGGアーキテクチャを活用して、脳腫瘍の検出の速度と精度を改善する。
GELANアーキテクチャを用いたRepVGG-GELANは,医用画像の高精度かつ効率的な脳腫瘍検出のための最先端のソリューションとして確立された有望な結果を提示する。
- 参考スコア(独自算出の注目度): 0.6062751776009752
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Object detection algorithms particularly those based on YOLO have demonstrated remarkable efficiency in balancing speed and accuracy. However, their application in brain tumour detection remains underexplored. This study proposes RepVGG-GELAN, a novel YOLO architecture enhanced with RepVGG, a reparameterized convolutional approach for object detection tasks particularly focusing on brain tumour detection within medical images. RepVGG-GELAN leverages the RepVGG architecture to improve both speed and accuracy in detecting brain tumours. Integrating RepVGG into the YOLO framework aims to achieve a balance between computational efficiency and detection performance. This study includes a spatial pyramid pooling-based Generalized Efficient Layer Aggregation Network (GELAN) architecture which further enhances the capability of RepVGG. Experimental evaluation conducted on a brain tumour dataset demonstrates the effectiveness of RepVGG-GELAN surpassing existing RCS-YOLO in terms of precision and speed. Specifically, RepVGG-GELAN achieves an increased precision of 4.91% and an increased AP50 of 2.54% over the latest existing approach while operating at 240.7 GFLOPs. The proposed RepVGG-GELAN with GELAN architecture presents promising results establishing itself as a state-of-the-art solution for accurate and efficient brain tumour detection in medical images. The implementation code is publicly available at https://github.com/ThensiB/RepVGG-GELAN.
- Abstract(参考訳): 特にYOLOに基づく物体検出アルゴリズムは、速度と精度のバランスをとる上で、顕著な効率性を示している。
しかし、脳腫瘍検出へのそれらの応用はいまだ研究されていない。
本研究では,RepVGGにより拡張された新しいYOLOアーキテクチャであるRepVGG-GELANを提案する。
RepVGG-GELANは、RepVGGアーキテクチャを活用して、脳腫瘍の検出の速度と精度を改善する。
RepVGGをYOLOフレームワークに統合することは、計算効率と検出性能のバランスを達成することを目的としている。
本研究は,空間ピラミッドプーリングに基づく汎用層凝集ネットワーク(GELAN)アーキテクチャを含み,RepVGGの能力をさらに向上させる。
脳腫瘍データセットで行った実験的評価は、RepVGG-GELANが既存のRCS-YOLOを上回る精度と速度で有効であることを示す。
具体的には、RepVGG-GELANは、240.7 GFLOPsで動作しながら、最新のアプローチに比べて4.91%の精度と2.54%のAP50を達成する。
GELANアーキテクチャを用いたRepVGG-GELANは,医用画像の高精度かつ効率的な脳腫瘍検出のための最先端のソリューションとして確立された有望な結果を提示する。
実装コードはhttps://github.com/ThensiB/RepVGG-GELANで公開されている。
関連論文リスト
- Handling Geometric Domain Shifts in Semantic Segmentation of Surgical RGB and Hyperspectral Images [67.66644395272075]
本稿では,幾何学的アウト・オブ・ディストリビューションデータに直面する場合の,最先端のセマンティックセマンティックセマンティクスモデルの最初の解析を行う。
本稿では, 汎用性を高めるために, 有機移植(Organ Transplantation)と呼ばれる拡張技術を提案する。
我々の拡張技術は、RGBデータに対して最大67%、HSIデータに対して90%のSOAモデル性能を改善し、実際のOODテストデータに対して、分配内パフォーマンスのレベルでのパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-08-27T19:13:15Z) - LeYOLO, New Scalable and Efficient CNN Architecture for Object Detection [0.0]
FLOPに基づく効率的な物体検出のためのニューラルネットワークアーキテクチャの設計選択に着目する。
そこで本研究では,YOLOモデルの有効性を高めるために,いくつかの最適化手法を提案する。
本稿では、オブジェクト検出のための新しいスケーリングパラダイムと、LeYOLOと呼ばれるYOLO中心のモデルに寄与する。
論文 参考訳(メタデータ) (2024-06-20T12:08:24Z) - Lightweight Object Detection: A Study Based on YOLOv7 Integrated with
ShuffleNetv2 and Vision Transformer [0.0]
本研究は、モバイルプラットフォーム上での運用効率と速度を向上させるために、YOLOv7アルゴリズムの最適化をゼロにする。
実験結果から, 改良されたYOLOモデルは優れた性能を示した。
論文 参考訳(メタデータ) (2024-03-04T05:29:32Z) - RCS-YOLO: A Fast and High-Accuracy Object Detector for Brain Tumor
Detection [7.798672884591179]
チャネルシャッフル(RCS-YOLO)に基づく新しいYOLOアーキテクチャを提案する。
脳腫瘍データセット Br35H の実験的結果は,提案モデルが YOLOv6, YOLOv7, YOLOv8 を超える速度と精度を示した。
提案したRCS-YOLOは,脳腫瘍検出タスクにおける最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-07-31T05:38:17Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - EAutoDet: Efficient Architecture Search for Object Detection [110.99532343155073]
EAutoDetフレームワークは、1.4GPU日でオブジェクト検出のための実用的なバックボーンとFPNアーキテクチャを検出できる。
本稿では,一方のエッジ上での候補演算の重みを共有し,それらを一つの畳み込みに集約することでカーネル再利用手法を提案する。
特に、発見されたアーキテクチャは最先端のオブジェクト検出NAS法を超越し、120 FPSで40.1 mAP、49.2 mAP、41.3 FPSをCOCOテストデブセットで達成している。
論文 参考訳(メタデータ) (2022-03-21T05:56:12Z) - NAS-FCOS: Efficient Search for Object Detection Architectures [113.47766862146389]
簡易なアンカーフリー物体検出器の特徴ピラミッドネットワーク (FPN) と予測ヘッドを探索し, より効率的な物体検出手法を提案する。
慎重に設計された検索空間、検索アルゴリズム、ネットワーク品質を評価するための戦略により、8つのV100 GPUを使用して、4日以内に最高のパフォーマンスの検知アーキテクチャを見つけることができる。
論文 参考訳(メタデータ) (2021-10-24T12:20:04Z) - Inception Convolution with Efficient Dilation Search [121.41030859447487]
拡散畳み込みは、効果的な受容場を制御し、オブジェクトの大規模な分散を処理するための標準的な畳み込みニューラルネットワークの重要な変異体である。
そこで我々は,異なる軸,チャネル,層間の独立な拡散を有する拡張畳み込みの新たな変異体,すなわち開始(拡張)畳み込みを提案する。
本稿では,データに複雑なインセプション・コンボリューションを適合させる実用的な手法を探索し,統計的最適化に基づく簡易かつ効果的な拡張探索アルゴリズム(EDO)を開発した。
論文 参考訳(メタデータ) (2020-12-25T14:58:35Z) - Real-time object detection method based on improved YOLOv4-tiny [0.0]
YOLOv4-tiny は YOLOv4 に基づいて提案され,ネットワーク構造をシンプルにし,パラメータを削減する。
まず、Yolov4-tinyの2つのCSPBlockモジュールの代わりにResNet-Dネットワークで2つのResBlock-Dモジュールを使用する。
補助ネットワークの設計では、グローバルな特徴を抽出するために5x5の受容場を得るために2つの連続した3x3畳み込みを使用し、より効果的な情報を抽出するためにチャネルアテンションと空間アテンションも使用される。
論文 参考訳(メタデータ) (2020-11-09T08:26:28Z) - Hierarchical Dynamic Filtering Network for RGB-D Salient Object
Detection [91.43066633305662]
RGB-D Salient Object Detection (SOD) の主な目的は、相互融合情報をよりよく統合し活用する方法である。
本稿では,これらの問題を新たな視点から考察する。
我々は、より柔軟で効率的なマルチスケールのクロスモーダルな特徴処理を実装している。
論文 参考訳(メタデータ) (2020-07-13T07:59:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。