論文の概要: The trade-offs between Monolithic vs. Distributed Architectures
- arxiv url: http://arxiv.org/abs/2405.03619v1
- Date: Mon, 6 May 2024 16:34:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 13:07:25.313134
- Title: The trade-offs between Monolithic vs. Distributed Architectures
- Title(参考訳): モノリシックと分散アーキテクチャのトレードオフ
- Authors: Matheus Felisberto,
- Abstract要約: 本論では, 古建築様式の批判的レビューを行う。
モノリシックアーキテクチャと分散アーキテクチャの両方の長所と短所に焦点を当てている。
また、モノリシックから分散ベースのアプリケーションへの移行におけるクラウドコンピューティングの役割についても検討している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Software architects frequently engage in trade-off analysis, often confronting sub-optimal solutions due to unforeseen or overlooked disadvantages. Such outcomes can detrimentally affect a company's business operations and resource allocation. This article conducts a critical review of archi- tectural styles, particularly focusing on the strengths and weaknesses of both monolithic and distributed architectures, and their relationship to architectural characteristics. It also explores the role of cloud computing in transitioning from monolithic to distributed-based applications. Utilizing a broad range of sources, including papers and books from both industry and academia, this research provides an overview from theoretical foundations to practical applications. A notable trend observed is a shift back from distributed to monolithic architectures, possibly due to factors such as cost, complexity, and performance.
- Abstract(参考訳): ソフトウェアアーキテクトは、しばしばトレードオフ分析に従事し、予期せぬ、あるいは見過ごされた不利益のために、しばしば準最適ソリューションに直面します。
このような結果は、企業のビジネスオペレーションやリソース割り当てに有害に影響を与えます。
この記事では、特にモノリシックアーキテクチャと分散アーキテクチャの長所と短所、およびそれらのアーキテクチャ特性との関係について、アーティテクチュラルなスタイルの批判的なレビューを行う。
また、モノリシックから分散ベースのアプリケーションへの移行におけるクラウドコンピューティングの役割についても検討している。
本研究は,産学両分野の論文や書籍など幅広い資料を用いて,理論的基礎から実践的応用までを概観する。
注目すべきトレンドは、おそらくコスト、複雑さ、パフォーマンスなどの要因によって、分散アーキテクチャからモノリシックアーキテクチャへのシフトである。
関連論文リスト
- A Survey on All-in-One Image Restoration: Taxonomy, Evaluation and Future Trends [67.43992456058541]
画像復元(IR)とは、ノイズ、ぼかし、気象効果などの劣化を除去しながら、画像の視覚的品質を改善する過程である。
従来のIR手法は、一般的に特定の種類の劣化をターゲットとしており、複雑な歪みを伴う現実のシナリオにおいて、その効果を制限している。
オールインワン画像復元(AiOIR)パラダイムが登場し、複数の劣化タイプに順応的に対処する統一されたフレームワークを提供する。
論文 参考訳(メタデータ) (2024-10-19T11:11:09Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - Serving Deep Learning Model in Relational Databases [70.53282490832189]
リレーショナルデータ上での深層学習(DL)モデルの実現は、様々な商業分野や科学分野において重要な要件となっている。
最先端のDL中心アーキテクチャは、DL計算を専用のDLフレームワークにオフロードします。
UDF中心アーキテクチャの可能性は、リレーショナルデータベース管理システム(RDBMS)内の1つ以上のテンソル計算をユーザ定義関数(UDF)にカプセル化する。
論文 参考訳(メタデータ) (2023-10-07T06:01:35Z) - Data Mesh: a Systematic Gray Literature Review [3.038477115588261]
Data Meshは、運用上のボトルネックを最小限に抑え、回避することを目的とした、新たなドメイン駆動の分散データアーキテクチャである。
我々は114の産業用グレー文学論文を体系的に収集,分析,合成した。
このレビューは、データメッシュの4つの重要な原則に関する実践者の視点に関する洞察を提供する。
論文 参考訳(メタデータ) (2023-04-03T15:16:46Z) - A Theoretical Study of Inductive Biases in Contrastive Learning [32.98250585760665]
モデルクラスから派生した帰納的バイアスの効果を取り入れた,自己指導型学習に関する最初の理論的分析を行った。
モデルが限られたキャパシティを持つ場合、コントラスト表現はモデルアーキテクチャと互換性のある特定のクラスタリング構造を復元することを示す。
論文 参考訳(メタデータ) (2022-11-27T01:53:29Z) - Visual Analysis of Neural Architecture Spaces for Summarizing Design
Principles [22.66053583920441]
ArchExplorerは、ニューラルネットワーク空間を理解し、設計原則を要約するための視覚分析手法である。
クラスタ間のグローバルな関係と各クラスタ内のアーキテクチャの局所的近傍の両方を伝達するために,サークルパッキングに基づくアーキテクチャ視覚化が開発された。
設計原則を要約し,優れたアーキテクチャを選択する上でArchExplorerの有効性を示すために,2つのケーススタディとポストアナリシスが提示される。
論文 参考訳(メタデータ) (2022-08-20T12:15:59Z) - On Neural Architecture Inductive Biases for Relational Tasks [76.18938462270503]
合成ネットワーク一般化(CoRelNet)と呼ばれる類似度分布スコアに基づく簡単なアーキテクチャを導入する。
単純なアーキテクチャの選択は、分布外一般化において既存のモデルより優れていることが分かる。
論文 参考訳(メタデータ) (2022-06-09T16:24:01Z) - Dynamic enterprise architecture capabilities and organizational
benefits: an empirical mediation study [0.0]
本研究は、理論的基礎として動的能力の視点を用いて、EAに基づく能力に焦点を当てる。
エンタープライズアーキテクチャの動的な機能がどのように組織的利益をもたらすかを説明する新しい研究モデルを開発し、テストする。
論文 参考訳(メタデータ) (2021-05-18T10:07:31Z) - Automated Search for Resource-Efficient Branched Multi-Task Networks [81.48051635183916]
我々は,多タスクニューラルネットワークにおける分岐構造を自動的に定義する,微分可能なニューラルネットワーク探索に根ざした原理的アプローチを提案する。
本手法は,限られた資源予算内で高い性能の分岐構造を見いだすことができる。
論文 参考訳(メタデータ) (2020-08-24T09:49:19Z) - Weight-Sharing Neural Architecture Search: A Battle to Shrink the
Optimization Gap [90.93522795555724]
ニューラルアーキテクチャサーチ(NAS)は、学術と産業の両方で注目を集めている。
重み共有手法は、多くのアーキテクチャが同一のスーパーネットワークで重みを共有している。
本稿では,NAS,特に重み付け手法に関する文献レビューを行う。
論文 参考訳(メタデータ) (2020-08-04T11:57:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。