論文の概要: Can LLMs Deeply Detect Complex Malicious Queries? A Framework for Jailbreaking via Obfuscating Intent
- arxiv url: http://arxiv.org/abs/2405.03654v2
- Date: Tue, 7 May 2024 10:20:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 13:00:13.471127
- Title: Can LLMs Deeply Detect Complex Malicious Queries? A Framework for Jailbreaking via Obfuscating Intent
- Title(参考訳): LLMは複雑な悪意のあるクエリを深く検出できるか? 難読化インテントによる脱獄フレームワーク
- Authors: Shang Shang, Xinqiang Zhao, Zhongjiang Yao, Yepeng Yao, Liya Su, Zijing Fan, Xiaodan Zhang, Zhengwei Jiang,
- Abstract要約: IntentObfuscatorという新しいブラックボックスジェイルブレイク攻撃手法を導入する。
本稿では,ChatGPT-3.5,ChatGPT-4,Qwen,Baichuanなど,複数のモデルを対象としたIntentObfuscator法の有効性を実証的に検証した。
私たちは、グラフィック暴力、人種差別、性差別、政治的敏感さ、サイバーセキュリティの脅威、犯罪スキルなど、さまざまな種類のセンシティブなコンテンツに検証を拡張します。
- 参考スコア(独自算出の注目度): 3.380948804946178
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To demonstrate and address the underlying maliciousness, we propose a theoretical hypothesis and analytical approach, and introduce a new black-box jailbreak attack methodology named IntentObfuscator, exploiting this identified flaw by obfuscating the true intentions behind user prompts.This approach compels LLMs to inadvertently generate restricted content, bypassing their built-in content security measures. We detail two implementations under this framework: "Obscure Intention" and "Create Ambiguity", which manipulate query complexity and ambiguity to evade malicious intent detection effectively. We empirically validate the effectiveness of the IntentObfuscator method across several models, including ChatGPT-3.5, ChatGPT-4, Qwen and Baichuan, achieving an average jailbreak success rate of 69.21\%. Notably, our tests on ChatGPT-3.5, which claims 100 million weekly active users, achieved a remarkable success rate of 83.65\%. We also extend our validation to diverse types of sensitive content like graphic violence, racism, sexism, political sensitivity, cybersecurity threats, and criminal skills, further proving the substantial impact of our findings on enhancing 'Red Team' strategies against LLM content security frameworks.
- Abstract(参考訳): そこで,本研究では,ユーザプロンプトの背後にある真の意図を隠蔽して,その脆弱性を悪用するブラックボックス・ジェイルブレイク攻撃手法IntentObfuscatorを提案する。
このフレームワークでは、クエリの複雑さとあいまいさを操り、悪意のある意図の検出を効果的に回避する「Obscure Intention」と「Create Ambiguity」の2つの実装を詳述する。
本稿では,ChatGPT-3.5,ChatGPT-4,Qwen,Baichuanなど複数のモデルを対象としたIntentObfuscator法の有効性を実証的に検証した。
特に、週に1億人のアクティブユーザーを抱えるChatGPT-3.5での我々のテストは、83.65\%という驚くべき成功率を達成した。
私たちはまた、グラフィック暴力、人種差別、性差別、政治的感受性、サイバーセキュリティの脅威、犯罪スキルといった様々なタイプの機密コンテンツにも検証を拡大し、LLMコンテンツセキュリティフレームワークに対する「レッドチーム」戦略の強化に対する我々の発見の実質的な影響を証明しました。
関連論文リスト
- Safe Unlearning: A Surprisingly Effective and Generalizable Solution to Defend Against Jailbreak Attacks [89.54736699767315]
我々は、LLMの有害な知識を直接解き放つことは、脱獄攻撃から守るためのより効果的な方法になり得ると推測する。
Vicuna-7BのEmphout-of-distribution(OOD)に対する攻撃成功率(ASR)は82.6%から7.7%に低下した。
Llama2-7B-Chatは、約0.1Mの安全アライメントサンプルで微調整されているが、追加の安全システムプロンプトの下でも21.9%のASRを持つ。
論文 参考訳(メタデータ) (2024-07-03T07:14:05Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
本稿では、以前LLMセキュリティで見過ごされていた特別なトークンを活用して、ジェイルブレイク攻撃を改善する仮想コンテキストを提案する。
総合的な評価によると、仮想コンテキストによるジェイルブレイク攻撃は、4つの広く使われているジェイルブレイク手法の成功率を約40%向上させることができる。
論文 参考訳(メタデータ) (2024-06-28T11:35:54Z) - WordGame: Efficient & Effective LLM Jailbreak via Simultaneous Obfuscation in Query and Response [23.344727384686898]
我々は、現在の安全アライメントの共通パターンを分析し、クエリとレスポンスの同時難読化により、これらのパターンをジェイルブレイク攻撃に活用可能であることを示す。
具体的には、悪意のある単語をワードゲームに置き換えて、クエリの敵意を分解するWordGame攻撃を提案する。
論文 参考訳(メタデータ) (2024-05-22T21:59:22Z) - Gradient Cuff: Detecting Jailbreak Attacks on Large Language Models by
Exploring Refusal Loss Landscapes [69.5883095262619]
大規模言語モデル(LLM)は、ユーザがクエリを入力し、LLMが回答を生成する、顕著な生成AIツールになりつつある。
害と誤用を減らすため、人間のフィードバックからの強化学習のような高度な訓練技術を用いて、これらのLLMを人間の価値に合わせる努力がなされている。
近年の研究では、組込み安全ガードレールを転覆させようとする敵のジェイルブレイクの試みに対するLLMの脆弱性を強調している。
本稿では,脱獄を検知するGradient Cuffという手法を提案する。
論文 参考訳(メタデータ) (2024-03-01T03:29:54Z) - CodeChameleon: Personalized Encryption Framework for Jailbreaking Large
Language Models [49.60006012946767]
パーソナライズされた暗号化手法に基づく新しいジェイルブレイクフレームワークであるCodeChameleonを提案する。
我々は、7つの大規模言語モデルに関する広範な実験を行い、最先端の平均アタック成功率(ASR)を達成する。
GPT-4-1106上で86.6%のASRを実現する。
論文 参考訳(メタデータ) (2024-02-26T16:35:59Z) - Play Guessing Game with LLM: Indirect Jailbreak Attack with Implicit
Clues [16.97760778679782]
本稿では, LLM の防御戦略を回避し, 悪意のある応答を得る, 間接的ジェイルブレイク攻撃手法である Puzzler を提案する。
実験の結果,Puzzler はクローズドソース LLM 上で96.6% のクエリ成功率を達成した。
最先端のjailbreak検出アプローチに対してテストすると、Puzzlerはベースラインよりも検出を回避するのに効果的であることを証明している。
論文 参考訳(メタデータ) (2024-02-14T11:11:51Z) - SafeDecoding: Defending against Jailbreak Attacks via Safety-Aware Decoding [35.750885132167504]
我々は,大規模言語モデル(LLM)の安全性を意識したデコーディング戦略であるSafeDecodingを導入し,ユーザクエリに対する有用かつ無害な応答を生成する。
この結果から,SafeDecodingは,ユーザクエリに対する応答の利便性を損なうことなく,攻撃成功率やジェイルブレイク攻撃の有害性を著しく低下させることがわかった。
論文 参考訳(メタデータ) (2024-02-14T06:54:31Z) - All in How You Ask for It: Simple Black-Box Method for Jailbreak Attacks [0.0]
本研究では,ジェイルブレイクプロンプトを効率的に作成するための簡単なブラックボックス手法を提案する。
本手法は有害なプロンプトを目的のLSMを直接利用した良性表現に反復的に変換する。
提案手法は, 平均5回の質問に対して, 80%以上の攻撃成功率を達成した。
論文 参考訳(メタデータ) (2024-01-18T08:36:54Z) - Cognitive Overload: Jailbreaking Large Language Models with Overloaded
Logical Thinking [60.78524314357671]
本研究では,大規模言語モデル(LLM)の認知的構造とプロセスをターゲットにした新しいジェイルブレイク攻撃のカテゴリについて検討する。
提案する認知的オーバーロードはブラックボックス攻撃であり、モデルアーキテクチャやモデルウェイトへのアクセスの知識は不要である。
AdvBenchとMasterKeyで実施された実験では、人気のあるオープンソースモデルであるLlama 2とプロプライエタリモデルであるChatGPTの両方を含む様々なLLMが、認知的オーバーロードによって妥協可能であることが明らかになった。
論文 参考訳(メタデータ) (2023-11-16T11:52:22Z) - SmoothLLM: Defending Large Language Models Against Jailbreaking Attacks [99.23352758320945]
SmoothLLMは,大規模言語モデル(LLM)に対するジェイルブレーキング攻撃を軽減するために設計された,最初のアルゴリズムである。
敵が生成したプロンプトが文字レベルの変化に対して脆弱であることから、我々の防衛はまず、与えられた入力プロンプトの複数のコピーをランダムに摂動し、対応する予測を集約し、敵の入力を検出する。
論文 参考訳(メタデータ) (2023-10-05T17:01:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。