論文の概要: Fault Detection and Monitoring using an Information-Driven Strategy: Method, Theory, and Application
- arxiv url: http://arxiv.org/abs/2405.03667v1
- Date: Mon, 6 May 2024 17:43:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-07 12:46:34.794546
- Title: Fault Detection and Monitoring using an Information-Driven Strategy: Method, Theory, and Application
- Title(参考訳): 情報駆動型手法による断層検出とモニタリング:方法・理論・応用
- Authors: Camilo Ramírez, Jorge F. Silva, Ferhat Tamssaouet, Tomás Rojas, Marcos E. Orchard,
- Abstract要約: 本稿では,新しいコンセプトドリフト検出器に基づく情報駆動型故障検出手法を提案する。
本手法は,加法雑音モデルの入出力関係におけるドリフトの同定に適している。
提案したMIに基づく故障検出手法の理論的特性を実証する。
- 参考スコア(独自算出の注目度): 5.056456697289351
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The ability to detect when a system undergoes an incipient fault is of paramount importance in preventing a critical failure. In this work, we propose an information-driven fault detection method based on a novel concept drift detector. The method is tailored to identifying drifts in input-output relationships of additive noise models (i.e., model drifts) and is based on a distribution-free mutual information (MI) estimator. Our scheme does not require prior faulty examples and can be applied distribution-free over a large class of system models. Our core contributions are twofold. First, we demonstrate the connection between fault detection, model drift detection, and testing independence between two random variables. Second, we prove several theoretical properties of the proposed MI-based fault detection scheme: (i) strong consistency, (ii) exponentially fast detection of the non-faulty case, and (iii) control of both significance levels and power of the test. To conclude, we validate our theory with synthetic data and the benchmark dataset N-CMAPSS of aircraft turbofan engines. These empirical results support the usefulness of our methodology in many practical and realistic settings, and the theoretical results show performance guarantees that other methods cannot offer.
- Abstract(参考訳): システムが障害発生時に検出できることは、致命的な失敗を防ぐ上で、最重要事項である。
本研究では,新しいドリフト検出器を用いた情報駆動型断層検出手法を提案する。
本手法は,付加的雑音モデル(モデルドリフト)の入出力関係におけるドリフトの同定に適しており,分布自由な相互情報(MI)推定器に基づいている。
提案手法は事前の故障例を必要としないため,大規模なシステムモデルに対して分散フリーに適用することができる。
私たちのコアコントリビューションは2つです。
まず, 故障検出, モデルドリフト検出, および2つの確率変数間の独立性テストの関連性を示す。
第二に、提案したMIベースの故障検出手法の理論的特性をいくつか証明する。
(i)強い一貫性。
(ii)非デフォルトケースの指数的高速検出、及び
三 検査の重要度及び威力の両面の制御
結論として,航空機用ターボファンエンジンの合成データとベンチマークデータセットN-CMAPSSを用いて,我々の理論を検証した。
これらの実験結果は,多くの実践的かつ現実的な環境での方法論の有用性を裏付けるものであり,理論的な結果は,他の手法では提供できない性能保証を示すものである。
関連論文リスト
- A Neighbor-Searching Discrepancy-based Drift Detection Scheme for Learning Evolving Data [40.00357483768265]
本研究では,Nighbor-Searching Discrepancyに基づく新しい概念ドリフト検出手法を提案する。
提案手法は,仮想ドリフトを無視しながら,実概念ドリフトを高精度に検出することができる。
また、ある階級の侵略や撤退を特定することで、分類境界の変化の方向を示すこともできる。
論文 参考訳(メタデータ) (2024-05-23T04:03:36Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
電力系統の信頼性を確保するためには絶縁体の検査が重要である。
検査プロセスを自動化するために、ディープラーニングがますます活用されています。
本稿では,異常検出とオブジェクト検出の2段階的アプローチを提案する。
論文 参考訳(メタデータ) (2023-11-14T11:36:20Z) - A Comparison of Residual-based Methods on Fault Detection [6.675805308519987]
本研究では,産業システムにおける欠陥検出のための残差に基づく2つのアプローチを比較した。
性能評価は, 健康指標構築, 断層検出, 健康指標解釈の3つの課題に焦点をあてる。
その結果、両モデルとも平均20サイクルの遅延で故障を検出でき、偽陽性率を低く維持できることがわかった。
論文 参考訳(メタデータ) (2023-09-05T14:39:27Z) - Energy-based Out-of-Distribution Detection for Graph Neural Networks [76.0242218180483]
我々は,GNNSafeと呼ばれるグラフ上での学習のための,シンプルで強力で効率的なOOD検出モデルを提案する。
GNNSafeは、最先端技術に対するAUROCの改善を最大17.0%で達成しており、そのような未開発領域では単純だが強力なベースラインとして機能する可能性がある。
論文 参考訳(メタデータ) (2023-02-06T16:38:43Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - Detecting Concept Drift in the Presence of Sparsity -- A Case Study of
Automated Change Risk Assessment System [0.8021979227281782]
文学におけるテクスティットパリシティ(textitsparsity)と呼ばれる欠落値は、多くの実世界のデータセットの共通の特徴である。
本研究では,異なる種類の疎性に対する様々な統計およびMLに基づくデータ計算手法の欠落した値のパターンについて検討する。
次に、異なるメトリクスに基づいて、欠落した値を持つデータセットを与えられた最良のコンセプトドリフト検出器を選択する。
論文 参考訳(メタデータ) (2022-07-27T04:27:49Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
本稿では,識別器のミラー化ワッサースタイン損失を利用して,よりセマンティックレベルの再構築を行う逆自動エンコーダの変種を提案する。
我々は,再建基準の代替として,異常スコアの代替尺度を提案した。
提案手法は,OOD検出ベンチマークにおける異常検出の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2020-03-24T08:26:58Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z) - Uncertainty Estimation Using a Single Deep Deterministic Neural Network [66.26231423824089]
本稿では,1回のフォワードパスで,テスト時に分布データポイントの発見と拒否が可能な決定論的ディープモデルを訓練する手法を提案する。
我々は,新しい損失関数とセントロイド更新方式を用いて,これらをスケールトレーニングし,ソフトマックスモデルの精度に適合させる。
論文 参考訳(メタデータ) (2020-03-04T12:27:36Z) - Towards Out-of-Distribution Detection with Divergence Guarantee in Deep
Generative Models [22.697643259435115]
深層生成モデルは、分布外データ(OOD)に対して、分布内データ(ID)よりも高い確率を割り当てることができる。
フローベースモデルにおける散逸を解析するための定理を証明している。
本稿では,2つのグループ異常検出手法を提案する。
論文 参考訳(メタデータ) (2020-02-09T09:54:12Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。