Few-Shot Class Incremental Learning via Robust Transformer Approach
- URL: http://arxiv.org/abs/2405.05984v1
- Date: Wed, 8 May 2024 03:35:52 GMT
- Title: Few-Shot Class Incremental Learning via Robust Transformer Approach
- Authors: Naeem Paeedeh, Mahardhika Pratama, Sunu Wibirama, Wolfgang Mayer, Zehong Cao, Ryszard Kowalczyk,
- Abstract summary: Few-Shot Class-Incremental Learning presents an extension of the Class Incremental Learning problem where a model is faced with the problem of data scarcity.
This problem remains an open problem because all recent works are built upon the convolutional neural networks performing sub-optimally.
Our paper presents Robust Transformer Approach built upon the Compact Convolution Transformer.
- Score: 16.590193619691416
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Few-Shot Class-Incremental Learning presents an extension of the Class Incremental Learning problem where a model is faced with the problem of data scarcity while addressing the catastrophic forgetting problem. This problem remains an open problem because all recent works are built upon the convolutional neural networks performing sub-optimally compared to the transformer approaches. Our paper presents Robust Transformer Approach built upon the Compact Convolution Transformer. The issue of overfitting due to few samples is overcome with the notion of the stochastic classifier, where the classifier's weights are sampled from a distribution with mean and variance vectors, thus increasing the likelihood of correct classifications, and the batch-norm layer to stabilize the training process. The issue of CF is dealt with the idea of delta parameters, small task-specific trainable parameters while keeping the backbone networks frozen. A non-parametric approach is developed to infer the delta parameters for the model's predictions. The prototype rectification approach is applied to avoid biased prototype calculations due to the issue of data scarcity. The advantage of ROBUSTA is demonstrated through a series of experiments in the benchmark problems where it is capable of outperforming prior arts with big margins without any data augmentation protocols.
Related papers
- SMILE: Zero-Shot Sparse Mixture of Low-Rank Experts Construction From Pre-Trained Foundation Models [85.67096251281191]
We present an innovative approach to model fusion called zero-shot Sparse MIxture of Low-rank Experts (SMILE) construction.
SMILE allows for the upscaling of source models into an MoE model without extra data or further training.
We conduct extensive experiments across diverse scenarios, such as image classification and text generation tasks, using full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2024-08-19T17:32:15Z) - Informed Correctors for Discrete Diffusion Models [32.87362154118195]
We propose a family of informed correctors that more reliably counteracts discretization error by leveraging information learned by the model.
We also propose $k$-Gillespie's, a sampling algorithm that better utilizes each model evaluation, while still enjoying the speed and flexibility of $tau$-leaping.
Across several real and synthetic datasets, we show that $k$-Gillespie's with informed correctors reliably produces higher quality samples at lower computational cost.
arXiv Detail & Related papers (2024-07-30T23:29:29Z) - Learning on Transformers is Provable Low-Rank and Sparse: A One-layer Analysis [63.66763657191476]
We show that efficient numerical training and inference algorithms as low-rank computation have impressive performance for learning Transformer-based adaption.
We analyze how magnitude-based models affect generalization while improving adaption.
We conclude that proper magnitude-based has a slight on the testing performance.
arXiv Detail & Related papers (2024-06-24T23:00:58Z) - Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers [0.7704032792820767]
Deep neural networks are applied in more and more areas of everyday life.
They still lack essential abilities, such as robustly dealing with spatially transformed input signals.
We propose a novel technique to emulate such an inference process for neural nets.
arXiv Detail & Related papers (2024-05-06T09:47:29Z) - RanPAC: Random Projections and Pre-trained Models for Continual Learning [59.07316955610658]
Continual learning (CL) aims to learn different tasks (such as classification) in a non-stationary data stream without forgetting old ones.
We propose a concise and effective approach for CL with pre-trained models.
arXiv Detail & Related papers (2023-07-05T12:49:02Z) - Entropy optimized semi-supervised decomposed vector-quantized
variational autoencoder model based on transfer learning for multiclass text
classification and generation [3.9318191265352196]
We propose a semisupervised discrete latent variable model for multi-class text classification and text generation.
The proposed model employs the concept of transfer learning for training a quantized transformer model.
Experimental results indicate that the proposed model has surpassed the state-of-the-art models remarkably.
arXiv Detail & Related papers (2021-11-10T07:07:54Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z) - Imbalanced Data Learning by Minority Class Augmentation using Capsule
Adversarial Networks [31.073558420480964]
We propose a method to restore the balance in imbalanced images, by coalescing two concurrent methods.
In our model, generative and discriminative networks play a novel competitive game.
The coalescing of capsule-GAN is effective at recognizing highly overlapping classes with much fewer parameters compared with the convolutional-GAN.
arXiv Detail & Related papers (2020-04-05T12:36:06Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.