A Novel Cross-band CSI Prediction Scheme for Multi-band Fingerprint based Localization
- URL: http://arxiv.org/abs/2405.03842v1
- Date: Mon, 6 May 2024 20:44:58 GMT
- Title: A Novel Cross-band CSI Prediction Scheme for Multi-band Fingerprint based Localization
- Authors: Yuan Ruihao, Huang Kaixuan, Zhang Shunqing,
- Abstract summary: We propose a system to extract the time-varying parameters based on space-alternating generalized expectation (SAGE) algorithm.
We then used variational auto-encoder (VAE) to reconstruct channel state information on another channel.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Because of the advantages of computation complex- ity compared with traditional localization algorithms, fingerprint based localization is getting increasing demand. Expanding the fingerprint database from the frequency domain by channel reconstruction can improve localization accuracy. However, in a mobility environment, the channel reconstruction accuracy is limited by the time-varying parameters. In this paper, we proposed a system to extract the time-varying parameters based on space-alternating generalized expectation maximization (SAGE) algorithm, then used variational auto-encoder (VAE) to reconstruct the channel state information on another channel. The proposed scheme is tested on the data generated by the deep- MIMO channel model. Mathematical analysis for the viability of our system is also shown in this paper.
Related papers
- Machine Learning-Based Channel Prediction for RIS-assisted MIMO Systems With Channel Aging [11.867884158309373]
Reconfigurable intelligent surfaces (RISs) have emerged as a promising technology to enhance the performance of sixth-generation (6G) and beyond communication systems.
The passive nature of RISs and their large number of reflecting elements pose challenges to the channel estimation process.
We propose an extended channel estimation framework for RIS-assisted multiple-input multiple-output (MIMO) systems based on a convolutional neural network (CNN) integrated with an autoregressive (AR) predictor.
arXiv Detail & Related papers (2024-05-09T19:45:49Z) - Joint Sparsity Pattern Learning Based Channel Estimation for Massive
MIMO-OTFS Systems [46.42375183269616]
We propose a channel estimation scheme based on joint sparsity pattern learning (JSPL) for massive multi-input multi-output (MIMO) modulation aided systems.
Both our simulation results and analysis demonstrate that the proposed channel estimation scheme achieves an improved performance over the representative state-of-the-art baseline schemes.
arXiv Detail & Related papers (2024-03-06T15:05:39Z) - A Variational Auto-Encoder Enabled Multi-Band Channel Prediction Scheme
for Indoor Localization [11.222977249913411]
We provide a scheme to improve the accuracy of indoor fingerprint localization from the frequency domain.
We tested our proposed scheme on COST 2100 simulation data and real time frequency division multiplexing (OFDM) WiFi data collected from an office scenario.
arXiv Detail & Related papers (2023-09-19T08:19:34Z) - Deep Reinforcement Learning for IRS Phase Shift Design in
Spatiotemporally Correlated Environments [93.30657979626858]
We propose a deep actor-critic algorithm that accounts for channel correlations and destination motion.
We show that, when channels aretemporally correlated, the inclusion of the SNR in the state representation with function approximation in ways that inhibit convergence.
arXiv Detail & Related papers (2022-11-02T22:07:36Z) - Three-Way Deep Neural Network for Radio Frequency Map Generation and
Source Localization [67.93423427193055]
Monitoring wireless spectrum over spatial, temporal, and frequency domains will become a critical feature in beyond-5G and 6G communication technologies.
In this paper, we present a Generative Adversarial Network (GAN) machine learning model to interpolate irregularly distributed measurements across the spatial domain.
arXiv Detail & Related papers (2021-11-23T22:25:10Z) - Channel Estimation Based on Machine Learning Paradigm for Spatial
Modulation OFDM [0.0]
Deep neural network (DNN) is integrated with spatial modulation-orthogonal frequency division multiplexing (SM-OFDM) technique for end-to-end data detection over Rayleigh fading channel.
This proposed system directly demodulates the received symbols, leaving the channel estimation done only implicitly.
arXiv Detail & Related papers (2021-09-15T10:54:56Z) - Neural Calibration for Scalable Beamforming in FDD Massive MIMO with
Implicit Channel Estimation [10.775558382613077]
Channel estimation and beamforming play critical roles in frequency-division duplexing (FDD) massive multiple-input multiple-output (MIMO) systems.
We propose a deep learning-based approach that directly optimize the beamformers at the base station according to the received uplink pilots.
A neural calibration method is proposed to improve the scalability of the end-to-end design.
arXiv Detail & Related papers (2021-08-03T14:26:14Z) - Learning to Estimate RIS-Aided mmWave Channels [50.15279409856091]
We focus on uplink cascaded channel estimation, where known and fixed base station combining and RIS phase control matrices are considered for collecting observations.
To boost the estimation performance and reduce the training overhead, the inherent channel sparsity of mmWave channels is leveraged in the deep unfolding method.
It is verified that the proposed deep unfolding network architecture can outperform the least squares (LS) method with a relatively smaller training overhead and online computational complexity.
arXiv Detail & Related papers (2021-07-27T06:57:56Z) - PILOT: Introducing Transformers for Probabilistic Sound Event
Localization [107.78964411642401]
This paper introduces a novel transformer-based sound event localization framework, where temporal dependencies in the received multi-channel audio signals are captured via self-attention mechanisms.
The framework is evaluated on three publicly available multi-source sound event localization datasets and compared against state-of-the-art methods in terms of localization error and event detection accuracy.
arXiv Detail & Related papers (2021-06-07T18:29:19Z) - Deep Cellular Recurrent Network for Efficient Analysis of Time-Series
Data with Spatial Information [52.635997570873194]
This work proposes a novel deep cellular recurrent neural network (DCRNN) architecture to process complex multi-dimensional time series data with spatial information.
The proposed architecture achieves state-of-the-art performance while utilizing substantially less trainable parameters when compared to comparable methods in the literature.
arXiv Detail & Related papers (2021-01-12T20:08:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.