論文の概要: Role of Sensing and Computer Vision in 6G Wireless Communications
- arxiv url: http://arxiv.org/abs/2405.03945v1
- Date: Tue, 7 May 2024 02:10:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 15:38:26.384219
- Title: Role of Sensing and Computer Vision in 6G Wireless Communications
- Title(参考訳): 6G無線通信におけるセンシングとコンピュータビジョンの役割
- Authors: Seungnyun Kim, Jihoon Moon, Jinhong Kim, Yongjun Ahn, Donghoon Kim, Sunwoo Kim, Kyuhong Shim, Byonghyo Shim,
- Abstract要約: 本稿では,6G用センサおよびCV支援無線通信フレームワークについて概観する。
SVWCは、位置決め精度、データレート、アクセス遅延の観点から、従来の5Gシステムよりもかなりの性能向上を実現していることを示す。
- 参考スコア(独自算出の注目度): 30.196137325424324
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, we are witnessing the remarkable progress and widespread adoption of sensing technologies in autonomous driving, robotics, and metaverse. Considering the rapid advancement of computer vision (CV) technology to analyze the sensing information, we anticipate a proliferation of wireless applications exploiting the sensing and CV technologies in 6G. In this article, we provide a holistic overview of the sensing and CV-aided wireless communications (SVWC) framework for 6G. By analyzing the high-resolution sensing information through the powerful CV techniques, SVWC can quickly and accurately understand the wireless environments and then perform the wireless tasks. To demonstrate the efficacy of SVWC, we design the whole process of SVWC including the sensing dataset collection, DL model training, and execution of realistic wireless tasks. From the numerical evaluations on 6G communication scenarios, we show that SVWC achieves considerable performance gains over the conventional 5G systems in terms of positioning accuracy, data rate, and access latency.
- Abstract(参考訳): 近年,自動運転,ロボット工学,メタバースにおけるセンサ技術の進歩と普及が目覚ましい。
センサ情報を解析するためのコンピュータビジョン(CV)技術の急速な進歩を考えると,センサ技術とCV技術を利用した無線アプリケーションの普及が期待できる。
本稿では,6G用センサおよびCV支援無線通信(SVWC)フレームワークについて概観する。
強力なCV技術を用いて高分解能センシング情報を解析することにより、SVWCは無線環境を迅速かつ正確に理解し、無線タスクを実行することができる。
SVWCの有効性を実証するために,センサデータセット収集,DLモデルトレーニング,現実的な無線タスクの実行を含むSVWCの全過程を設計する。
6G通信シナリオにおける数値評価から,SVWCは位置決め精度,データレート,アクセス遅延の観点から,従来の5Gシステムよりもかなりの性能向上を実現していることを示す。
関連論文リスト
- From 5G to 6G: A Survey on Security, Privacy, and Standardization Pathways [21.263571241047178]
6Gのビジョンは、より高速なデータレート、ほぼゼロのレイテンシ、より高いキャパシティでネットワーク機能を強化することである。
この進歩は、没入型混合現実体験、ホログラフィー通信、スマートシティインフラの実現を目指している。
6Gの拡張は、不正アクセスやデータ漏洩など、重要なセキュリティとプライバシの懸念を提起する。
論文 参考訳(メタデータ) (2024-10-04T03:03:44Z) - ViT LoS V2X: Vision Transformers for Environment-aware LoS Blockage Prediction for 6G Vehicular Networks [20.953587995374168]
我々は、畳み込みニューラルネットワーク(CNN)とカスタマイズされた視覚変換器(ViT)を組み合わせたディープラーニングベースのアプローチを提案する。
提案手法は,時系列マルチモーダルデータから特徴を抽出するために,CNNとViTの相乗的強みを利用する。
その結果,提案手法は精度が高く,最先端のソリューションよりも優れ,95%以上の精度で予測できることがわかった。
論文 参考訳(メタデータ) (2024-06-27T01:38:09Z) - SAWEC: Sensing-Assisted Wireless Edge Computing [7.115682353265054]
本稿では,この問題に対処する新しいセンサ支援無線エッジコンピューティング(SAWEC)パラダイムを提案する。
我々は,無線センシング技術を活用し,環境中の物体の位置を推定し,環境力学に関する洞察を得る。
実験の結果,SAWECはチャネル占有率と終端遅延を90%以上削減することがわかった。
論文 参考訳(メタデータ) (2024-02-15T15:39:46Z) - Foundation Model Based Native AI Framework in 6G with Cloud-Edge-End
Collaboration [56.330705072736166]
基礎モデルに基づく6GネイティブAIフレームワークを提案し、意図認識型PFMのカスタマイズアプローチを提供し、新しいクラウド-エッジコラボレーションパラダイムを概説する。
実例として,無線通信システムにおける最大和率を達成するために,このフレームワークをオーケストレーションに適用する。
論文 参考訳(メタデータ) (2023-10-26T15:19:40Z) - UAV Based 5G Network: A Practical Survey Study [0.0]
無人航空機(UAV)は、新しい無線ネットワークの開発に大きく貢献することが期待されている。
UAVは5Gネットワークの低レイテンシと高速能力を利用して大量のデータをリアルタイムに転送することができる。
論文 参考訳(メタデータ) (2022-12-27T00:34:59Z) - A Wireless-Vision Dataset for Privacy Preserving Human Activity
Recognition [53.41825941088989]
アクティビティ認識の堅牢性を改善するため,WiNN(WiFi-based and video-based neural network)が提案されている。
以上の結果から,WiViデータセットは一次需要を満足し,パイプライン内の3つのブランチはすべて,80%以上のアクティビティ認識精度を維持していることがわかった。
論文 参考訳(メタデータ) (2022-05-24T10:49:11Z) - Network-Aware 5G Edge Computing for Object Detection: Augmenting
Wearables to "See'' More, Farther and Faster [18.901994926291465]
本稿では,VIS4IONと呼ばれる強力なスマートウェアラブルにおいて,物体検出のための5G無線オフロードの詳細なシミュレーションと評価を行う。
現行のVIS4IONシステムは、高解像度カメラ、視覚処理、触覚とオーディオのフィードバックを備えた電子ブックバッグである。
本稿では,カメラデータをモバイルエッジクラウドにアップロードして,リアルタイムなオブジェクト検出と検出結果をウェアラブルに送信することを検討する。
論文 参考訳(メタデータ) (2021-12-25T07:09:00Z) - A Comprehensive Overview on 5G-and-Beyond Networks with UAVs: From
Communications to Sensing and Intelligence [152.89360859658296]
5Gネットワークは、拡張モバイルブロードバンド(eMBB)、超信頼性低遅延通信(URLLC)、大規模機械型通信(mMTC)の3つの典型的な利用シナリオをサポートする必要がある。
一方、UAVはコスト効率のよい航空プラットフォームとして利用でき、地上の利用者に高い高度と3D空間での操作性を利用して通信サービスを強化することができる。
一方,UAVと地上ユーザの両方に同時に通信サービスを提供することは,ユビキタスな3D信号網と強力な地上ネットワーク干渉の必要性から,新たな課題を提起する。
論文 参考訳(メタデータ) (2020-10-19T08:56:04Z) - A Tutorial on Ultra-Reliable and Low-Latency Communications in 6G:
Integrating Domain Knowledge into Deep Learning [115.75967665222635]
超信頼性・低レイテンシ通信(URLLC)は、様々な新しいミッションクリティカルなアプリケーションの開発の中心となる。
ディープラーニングアルゴリズムは、将来の6GネットワークでURLLCを実現する技術を開発するための有望な方法と考えられている。
このチュートリアルでは、URLLCのさまざまなディープラーニングアルゴリズムにドメイン知識を組み込む方法について説明する。
論文 参考訳(メタデータ) (2020-09-13T14:53:01Z) - Applying Deep-Learning-Based Computer Vision to Wireless Communications:
Methodologies, Opportunities, and Challenges [100.45137961106069]
ディープラーニング(DL)はコンピュータビジョン(CV)分野で大きな成功を収めている。
本稿では,無線通信におけるDLベースのCVの適用について紹介する。
論文 参考訳(メタデータ) (2020-06-10T11:37:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。