High Energy Density Radiative Transfer in the Diffusion Regime with Fourier Neural Operators
- URL: http://arxiv.org/abs/2405.04003v1
- Date: Tue, 7 May 2024 04:44:59 GMT
- Title: High Energy Density Radiative Transfer in the Diffusion Regime with Fourier Neural Operators
- Authors: Joseph Farmer, Ethan Smith, William Bennett, Ryan McClarren,
- Abstract summary: We propose a novel approach to model Marshak waves using Fourier Neural Operators (FNO)
We develop two FNO-based models: (1) a base model that learns the mapping between the drive condition and material properties to a solution approximation based on the widely used analytic model by Hammer & Rosen (2003), and (2) a model that corrects the inaccuracies of the analytic approximation by learning the mapping to a more accurate numerical solution.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Radiative heat transfer is a fundamental process in high energy density physics and inertial fusion. Accurately predicting the behavior of Marshak waves across a wide range of material properties and drive conditions is crucial for design and analysis of these systems. Conventional numerical solvers and analytical approximations often face challenges in terms of accuracy and computational efficiency. In this work, we propose a novel approach to model Marshak waves using Fourier Neural Operators (FNO). We develop two FNO-based models: (1) a base model that learns the mapping between the drive condition and material properties to a solution approximation based on the widely used analytic model by Hammer & Rosen (2003), and (2) a model that corrects the inaccuracies of the analytic approximation by learning the mapping to a more accurate numerical solution. Our results demonstrate the strong generalization capabilities of the FNOs and show significant improvements in prediction accuracy compared to the base analytic model.
Related papers
- Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - How Much is Enough? A Study on Diffusion Times in Score-based Generative
Models [76.76860707897413]
Current best practice advocates for a large T to ensure that the forward dynamics brings the diffusion sufficiently close to a known and simple noise distribution.
We show how an auxiliary model can be used to bridge the gap between the ideal and the simulated forward dynamics, followed by a standard reverse diffusion process.
arXiv Detail & Related papers (2022-06-10T15:09:46Z) - Evaluating the Adversarial Robustness for Fourier Neural Operators [78.36413169647408]
Fourier Neural Operator (FNO) was the first to simulate turbulent flow with zero-shot super-resolution.
We generate adversarial examples for FNO based on norm-bounded data input perturbations.
Our results show that the model's robustness degrades rapidly with increasing perturbation levels.
arXiv Detail & Related papers (2022-04-08T19:19:42Z) - Bayesian Calibration of imperfect computer models using Physics-informed
priors [0.0]
We introduce a computational efficient data-driven framework suitable for quantifying the uncertainty in physical parameters of computer models.
We extend this into a fully Bayesian framework which allows quantifying the uncertainty of physical parameters and model predictions.
This work is motivated by the need for interpretable parameters for the hemodynamics of the heart for personal treatment of hypertension.
arXiv Detail & Related papers (2022-01-17T15:16:26Z) - Prediction of liquid fuel properties using machine learning models with
Gaussian processes and probabilistic conditional generative learning [56.67751936864119]
The present work aims to construct cheap-to-compute machine learning (ML) models to act as closure equations for predicting the physical properties of alternative fuels.
Those models can be trained using the database from MD simulations and/or experimental measurements in a data-fusion-fidelity approach.
The results show that ML models can predict accurately the fuel properties of a wide range of pressure and temperature conditions.
arXiv Detail & Related papers (2021-10-18T14:43:50Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
Redox flow batteries (RFBs) offer the capability to store large amounts of energy cheaply and efficiently.
There is a need for fast and accurate models of the charge-discharge curve of a RFB to potentially improve the battery capacity and performance.
We develop a multifidelity model for predicting the charge-discharge curve of a RFB.
arXiv Detail & Related papers (2021-06-17T00:49:55Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - Modeling Stochastic Microscopic Traffic Behaviors: a Physics Regularized
Gaussian Process Approach [1.6242924916178285]
This study presents a microscopic traffic model that can capture randomness and measure errors in the real world.
Since one unique feature of the proposed framework is the capability of capturing both car-following and lane-changing behaviors with one single model, numerical tests are carried out with two separated datasets.
arXiv Detail & Related papers (2020-07-17T06:03:32Z) - Real-Time Model Calibration with Deep Reinforcement Learning [4.707841918805165]
We propose a novel framework for inference of model parameters based on reinforcement learning.
The proposed methodology is demonstrated and evaluated on two model-based diagnostics test cases.
arXiv Detail & Related papers (2020-06-07T00:11:42Z) - Modeling System Dynamics with Physics-Informed Neural Networks Based on
Lagrangian Mechanics [3.214927790437842]
Two main modeling approaches often fail to meet requirements: first principles methods suffer from high bias, whereas data-driven modeling tends to have high variance.
We present physics-informed neural ordinary differential equations (PINODE), a hybrid model that combines the two modeling techniques to overcome the aforementioned problems.
Our findings are of interest for model-based control and system identification of mechanical systems.
arXiv Detail & Related papers (2020-05-29T15:10:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.