論文の概要: Evaluating Text Summaries Generated by Large Language Models Using OpenAI's GPT
- arxiv url: http://arxiv.org/abs/2405.04053v1
- Date: Tue, 7 May 2024 06:52:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-08 15:09:09.440730
- Title: Evaluating Text Summaries Generated by Large Language Models Using OpenAI's GPT
- Title(参考訳): OpenAIのGPTを用いた大規模言語モデルによるテキスト要約の評価
- Authors: Hassan Shakil, Atqiya Munawara Mahi, Phuoc Nguyen, Zeydy Ortiz, Mamoun T. Mardini,
- Abstract要約: 本研究では,OpenAI の GPT モデルを6つの変圧器モデルから生成したテキスト要約の独立評価器としての有効性について検討する。
ROUGEやLatent Semantic Analysis(LSA)といった従来の指標を用いて、高品質な要約(簡潔さ、妥当性、コヒーレンス、可読性)の本質的特性に基づいて、これらの要約を評価した。
分析の結果,GPTと従来の指標との間に有意な相関が認められた。
- 参考スコア(独自算出の注目度): 0.6740832660968358
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This research examines the effectiveness of OpenAI's GPT models as independent evaluators of text summaries generated by six transformer-based models from Hugging Face: DistilBART, BERT, ProphetNet, T5, BART, and PEGASUS. We evaluated these summaries based on essential properties of high-quality summary - conciseness, relevance, coherence, and readability - using traditional metrics such as ROUGE and Latent Semantic Analysis (LSA). Uniquely, we also employed GPT not as a summarizer but as an evaluator, allowing it to independently assess summary quality without predefined metrics. Our analysis revealed significant correlations between GPT evaluations and traditional metrics, particularly in assessing relevance and coherence. The results demonstrate GPT's potential as a robust tool for evaluating text summaries, offering insights that complement established metrics and providing a basis for comparative analysis of transformer-based models in natural language processing tasks.
- Abstract(参考訳): 本研究は,Hugging Face: DistilBART, BERT, ProphetNet, T5, BART, PEGASUSの6つのトランスフォーマーモデルから生成されたテキスト要約の独立評価器として,OpenAIのGPTモデルの有効性を検討する。
ROUGEやLatent Semantic Analysis(LSA)といった従来の指標を用いて,高品質な要約(簡潔さ,妥当性,コヒーレンス,可読性)の本質的特性に基づいて,これらの要約を評価した。
また, GPT を要約器としてではなく, 評価器として用いることで, 事前に定義された指標を使わずに, 要約品質を独立して評価することができる。
分析の結果,GPT評価と従来の指標との間に有意な相関が認められた。
その結果、GPTは、テキスト要約を評価するための堅牢なツールとしての可能性を示し、確立されたメトリクスを補完する洞察を提供し、自然言語処理タスクにおけるトランスフォーマーモデルの比較分析の基盤を提供する。
関連論文リスト
- A Comparative Study of Quality Evaluation Methods for Text Summarization [0.5512295869673147]
本稿では,大規模言語モデル(LLM)に基づくテキスト要約評価手法を提案する。
以上の結果から,LLMの評価は人間の評価と密接に一致しているが,ROUGE-2,BERTScore,SummaCなどの広く使用されている自動測定値には一貫性がない。
論文 参考訳(メタデータ) (2024-06-30T16:12:37Z) - Exploring the Correlation between Human and Machine Evaluation of Simultaneous Speech Translation [0.9576327614980397]
本研究では,人間の評価と相関関係を解析することにより,同時解釈評価における自動メトリクスの信頼性を評価することを目的とする。
ベンチマークでは,言語専門家による人間の評価を用いて,文の埋め込みと大規模言語モデルとの相関性を評価する。
その結果, GPTモデル, 特に直接的プロンプトを用いた GPT-3.5 は, ソーステキストとターゲットテキストのセマンティックな類似性の観点から, 人間の判断と最強の相関を示すことが示唆された。
論文 参考訳(メタデータ) (2024-06-14T14:47:19Z) - Information-Theoretic Distillation for Reference-less Summarization [67.51150817011617]
本稿では,要約のための情報理論的目的に基づいて,強力な要約器を蒸留する新しい枠組みを提案する。
我々は,教師モデルとしてPythia-2.8Bから出発する。
我々は,ChatGPTと競合する5億8800万のパラメータしか持たないコンパクトだが強力な要約器に到達した。
論文 参考訳(メタデータ) (2024-03-20T17:42:08Z) - CritiqueLLM: Towards an Informative Critique Generation Model for Evaluation of Large Language Model Generation [87.44350003888646]
Eval-Instructは、疑似参照でポイントワイズした批評を取得し、マルチパスプロンプトを通じてこれらの批評を修正できる。
CritiqueLLMは、ChatGPTとすべてのオープンソースベースラインを上回るように実証的に示されています。
論文 参考訳(メタデータ) (2023-11-30T16:52:42Z) - Exploring the Power of Topic Modeling Techniques in Analyzing Customer
Reviews: A Comparative Analysis [0.0]
大量のテキストデータをオンラインで分析するために、機械学習と自然言語処理アルゴリズムがデプロイされている。
本研究では,顧客レビューに特化して用いられる5つのトピックモデリング手法について検討・比較する。
以上の結果から,BERTopicはより意味のあるトピックを抽出し,良好な結果を得ることができた。
論文 参考訳(メタデータ) (2023-08-19T08:18:04Z) - Multi-Dimensional Evaluation of Text Summarization with In-Context
Learning [79.02280189976562]
本稿では,テキスト内学習を用いた多次元評価器として,大規模言語モデルの有効性について検討する。
実験の結果,テキスト要約作業において,文脈内学習に基づく評価手法が学習評価フレームワークと競合していることが判明した。
次に、テキスト内サンプルの選択や数などの要因がパフォーマンスに与える影響を分析する。
論文 参考訳(メタデータ) (2023-06-01T23:27:49Z) - Towards Interpretable Summary Evaluation via Allocation of Contextual
Embeddings to Reference Text Topics [1.5749416770494706]
多面的解釈可能な要約評価法(MISEM)は、要約の文脈トークンの埋め込みを、参照テキストで特定されたセマンティックトピックに割り当てることに基づいている。
MISEMはTAC'08データセット上の人間の判断と有望な.404ピアソン相関を達成している。
論文 参考訳(メタデータ) (2022-10-25T17:09:08Z) - News Summarization and Evaluation in the Era of GPT-3 [73.48220043216087]
GPT-3は,大規模な要約データセット上で訓練された微調整モデルと比較する。
我々は,GPT-3サマリーが圧倒的に好まれるだけでなく,タスク記述のみを用いることで,現実性に乏しいようなデータセット固有の問題に悩まされることも示している。
論文 参考訳(メタデータ) (2022-09-26T01:04:52Z) - Understanding the Extent to which Summarization Evaluation Metrics
Measure the Information Quality of Summaries [74.28810048824519]
ROUGEとBERTScoreのトークンアライメントを分析し、要約を比較する。
それらのスコアは、情報の重複を測定するものとしては解釈できない、と我々は主張する。
論文 参考訳(メタデータ) (2020-10-23T15:55:15Z) - Towards Question-Answering as an Automatic Metric for Evaluating the
Content Quality of a Summary [65.37544133256499]
質問回答(QA)を用いて要約内容の質を評価する指標を提案する。
提案指標であるQAEvalの分析を通じて,QAに基づくメトリクスの実験的メリットを実証する。
論文 参考訳(メタデータ) (2020-10-01T15:33:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。