Combating Concept Drift with Explanatory Detection and Adaptation for Android Malware Classification
- URL: http://arxiv.org/abs/2405.04095v3
- Date: Sat, 24 May 2025 14:42:02 GMT
- Title: Combating Concept Drift with Explanatory Detection and Adaptation for Android Malware Classification
- Authors: Yiling He, Junchi Lei, Zhan Qin, Kui Ren, Chun Chen,
- Abstract summary: DREAM is a novel system that improves drift detection and establishes an explanatory adaptation process.<n>Our evaluation shows that DREAM effectively improves the drift detection accuracy and reduces the expert analysis effort in adaptation.
- Score: 17.399454244765842
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Machine learning-based Android malware classifiers achieve high accuracy in stationary environments but struggle with concept drift. The rapid evolution of malware, especially with new families, can depress classification accuracy to near-random levels. Previous research has largely centered on detecting drift samples, with expert-led label revisions on these samples to guide model retraining. However, these methods often lack a comprehensive understanding of malware concepts and provide limited guidance for effective drift adaptation, leading to unstable detection performance and high human labeling costs. To combat concept drift, we propose DREAM, a novel system that improves drift detection and establishes an explanatory adaptation process. Our core idea is to integrate classifier and expert knowledge within a unified model. To achieve this, we embed malware explanations (or concepts) within the latent space of a contrastive autoencoder, while constraining sample reconstruction based on classifier predictions. This approach enhances classifier retraining in two key ways: 1) capturing the target classifier's characteristics to select more effective samples in drift detection and 2) enabling concept revisions that extend the classifier's semantics to provide stronger guidance for adaptation. Additionally, DREAM eliminates reliance on training data during real-time drift detection and provides a behavior-based drift explainer to support concept revision. Our evaluation shows that DREAM effectively improves the drift detection accuracy and reduces the expert analysis effort in adaptation across different malware datasets and classifiers. Notably, when updating a widely-used Drebin classifier, DREAM achieves the same accuracy with 76.6% fewer newly labeled samples compared to the best existing methods.
Related papers
- ADAPT: A Pseudo-labeling Approach to Combat Concept Drift in Malware Detection [0.8192907805418583]
Adapting machine learning models to changing data distributions requires frequent updates.<n>We introduce texttADAPT, a novel pseudo-labeling semi-supervised algorithm for addressing concept drift.
arXiv Detail & Related papers (2025-07-11T13:47:07Z) - Cluster Analysis and Concept Drift Detection in Malware [1.3812010983144798]
Concept drift refers to gradual or sudden changes in the properties of data that affect the accuracy of machine learning models.
We propose and analyze a clustering-based approach to detecting concept drift in the malware domain.
arXiv Detail & Related papers (2025-02-19T22:42:30Z) - A Fresh Take on Stale Embeddings: Improving Dense Retriever Training with Corrector Networks [81.2624272756733]
In dense retrieval, deep encoders provide embeddings for both inputs and targets.
We train a small parametric corrector network that adjusts stale cached target embeddings.
Our approach matches state-of-the-art results even when no target embedding updates are made during training.
arXiv Detail & Related papers (2024-09-03T13:29:13Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - Improving Malware Detection with Adversarial Domain Adaptation and Control Flow Graphs [10.352741619176383]
Existing solutions to combat concept drift use active learning.
We propose a method that learns retained information in malware control flow graphs post-drift by leveraging graph neural network.
Our approach demonstrates a significant enhancement in predicting unseen malware family in a binary classification task and predicting drifted malware families in a multi-class setting.
arXiv Detail & Related papers (2024-07-18T22:06:20Z) - Analyzing Adversarial Inputs in Deep Reinforcement Learning [53.3760591018817]
We present a comprehensive analysis of the characterization of adversarial inputs, through the lens of formal verification.
We introduce a novel metric, the Adversarial Rate, to classify models based on their susceptibility to such perturbations.
Our analysis empirically demonstrates how adversarial inputs can affect the safety of a given DRL system with respect to such perturbations.
arXiv Detail & Related papers (2024-02-07T21:58:40Z) - MORPH: Towards Automated Concept Drift Adaptation for Malware Detection [0.7499722271664147]
Concept drift is a significant challenge for malware detection.
Self-training has emerged as a promising approach to mitigate concept drift.
We propose MORPH -- an effective pseudo-label-based concept drift adaptation method.
arXiv Detail & Related papers (2024-01-23T14:25:43Z) - Cal-DETR: Calibrated Detection Transformer [67.75361289429013]
We propose a mechanism for calibrated detection transformers (Cal-DETR), particularly for Deformable-DETR, UP-DETR and DINO.
We develop an uncertainty-guided logit modulation mechanism that leverages the uncertainty to modulate the class logits.
Results corroborate the effectiveness of Cal-DETR against the competing train-time methods in calibrating both in-domain and out-domain detections.
arXiv Detail & Related papers (2023-11-06T22:13:10Z) - XAL: EXplainable Active Learning Makes Classifiers Better Low-resource Learners [71.8257151788923]
We propose a novel Explainable Active Learning framework (XAL) for low-resource text classification.<n>XAL encourages classifiers to justify their inferences and delve into unlabeled data for which they cannot provide reasonable explanations.<n>Experiments on six datasets show that XAL achieves consistent improvement over 9 strong baselines.
arXiv Detail & Related papers (2023-10-09T08:07:04Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - CADM: Confusion Model-based Detection Method for Real-drift in Chunk
Data Stream [3.0885191226198785]
Concept drift detection has attracted considerable attention due to its importance in many real-world applications such as health monitoring and fault diagnosis.
We propose a new approach to detect real-drift in the chunk data stream with limited annotations based on concept confusion.
arXiv Detail & Related papers (2023-03-25T08:59:27Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Confidence-aware Training of Smoothed Classifiers for Certified
Robustness [75.95332266383417]
We use "accuracy under Gaussian noise" as an easy-to-compute proxy of adversarial robustness for an input.
Our experiments show that the proposed method consistently exhibits improved certified robustness upon state-of-the-art training methods.
arXiv Detail & Related papers (2022-12-18T03:57:12Z) - Neurosymbolic hybrid approach to driver collision warning [64.02492460600905]
There are two main algorithmic approaches to autonomous driving systems.
Deep learning alone has achieved state-of-the-art results in many areas.
But sometimes it can be very difficult to debug if the deep learning model doesn't work.
arXiv Detail & Related papers (2022-03-28T20:29:50Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
Uncertainty Drift Detection (UDD) is able to detect drifts without access to true labels.
In contrast to input data-based drift detection, our approach considers the effects of the current input data on the properties of the prediction model.
We show that UDD outperforms other state-of-the-art strategies on two synthetic as well as ten real-world data sets for both regression and classification tasks.
arXiv Detail & Related papers (2021-07-05T08:56:36Z) - Automatic Learning to Detect Concept Drift [40.69280758487987]
We propose Meta-ADD, a novel framework that learns to classify concept drift by tracking the changed pattern of error rates.
Specifically, in the training phase, we extract meta-features based on the error rates of various concept drift, after which a meta-detector is developed via prototypical neural network.
In the detection phase, the learned meta-detector is fine-tuned to adapt to the corresponding data stream via stream-based active learning.
arXiv Detail & Related papers (2021-05-04T11:10:39Z) - Adversarial Concept Drift Detection under Poisoning Attacks for Robust
Data Stream Mining [15.49323098362628]
We propose a framework for robust concept drift detection in the presence of adversarial and poisoning attacks.
We introduce the taxonomy for two types of adversarial concept drifts, as well as a robust trainable drift detector.
We also introduce Relative Loss of Robustness - a novel measure for evaluating the performance of concept drift detectors under poisoning attacks.
arXiv Detail & Related papers (2020-09-20T18:46:31Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
We propose to leverage both labeled and unlabeled data for instance segmentation with improved accuracy by knowledge distillation.
We propose a novel Mask-guided Mean Teacher framework with Perturbation-sensitive Sample Mining.
Experiments show that the proposed method improves the performance significantly compared with the supervised method learned from labeled data only.
arXiv Detail & Related papers (2020-07-21T13:27:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.