論文の概要: Health Index Estimation Through Integration of General Knowledge with Unsupervised Learning
- arxiv url: http://arxiv.org/abs/2405.04990v1
- Date: Wed, 8 May 2024 11:54:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 14:35:00.685122
- Title: Health Index Estimation Through Integration of General Knowledge with Unsupervised Learning
- Title(参考訳): 一般知識と教師なし学習の統合による健康指標の推定
- Authors: Kristupas Bajarunas, Marcia L. Baptista, Kai Goebel, Manuel A. Chao,
- Abstract要約: 複雑なシステムにおいて、状態監視データ(CM)から正確な健康指標(HI)を推定することは、信頼性と解釈可能な予後および健康管理(PHM)に不可欠である。
本研究では,畳み込みオートエンコーダのモデルアーキテクチャと学習アルゴリズムに,劣化に関する一般的な知識を統合したHI推定のための教師なしハイブリッド手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurately estimating a Health Index (HI) from condition monitoring data (CM) is essential for reliable and interpretable prognostics and health management (PHM) in complex systems. In most scenarios, complex systems operate under varying operating conditions and can exhibit different fault modes, making unsupervised inference of an HI from CM data a significant challenge. Hybrid models combining prior knowledge about degradation with deep learning models have been proposed to overcome this challenge. However, previously suggested hybrid models for HI estimation usually rely heavily on system-specific information, limiting their transferability to other systems. In this work, we propose an unsupervised hybrid method for HI estimation that integrates general knowledge about degradation into the convolutional autoencoder's model architecture and learning algorithm, enhancing its applicability across various systems. The effectiveness of the proposed method is demonstrated in two case studies from different domains: turbofan engines and lithium batteries. The results show that the proposed method outperforms other competitive alternatives, including residual-based methods, in terms of HI quality and their utility for Remaining Useful Life (RUL) predictions. The case studies also highlight the comparable performance of our proposed method with a supervised model trained with HI labels.
- Abstract(参考訳): 複雑なシステムにおいて、状態監視データ(CM)から正確な健康指標(HI)を推定することは、信頼性と解釈可能な予後および健康管理(PHM)に不可欠である。
ほとんどのシナリオでは、複雑なシステムは様々な動作条件下で動作し、異なる障害モードを示すことができるため、CMデータからのHIの教師なし推論が大きな課題となる。
この課題を克服するために、劣化に関する事前知識とディープラーニングモデルを組み合わせたハイブリッドモデルが提案されている。
しかし、以前に提案されたHI推定のハイブリッドモデルは通常、システム固有の情報に大きく依存し、他のシステムへの転送可能性を制限する。
本研究では,畳み込みオートエンコーダのモデルアーキテクチャと学習アルゴリズムに劣化に関する一般的な知識を組み込んだHI推定のための教師なしハイブリッド手法を提案する。
提案手法の有効性は, ターボファンエンジンとリチウム電池の2つの領域で実証された。
提案手法は, HIの品質と, その有用性(Remaining Useful Life, RUL)予測において, 残差ベースの方法を含む他の競合手法よりも優れていることを示す。
ケーススタディでは,HIラベルで学習した教師付きモデルを用いて,提案手法と同等の性能を示す。
関連論文リスト
- Robust CATE Estimation Using Novel Ensemble Methods [0.8246494848934447]
臨床治験における条件平均治療効果(CATE)の評価は治療効果の不均一性の理解に不可欠である。
本研究は,多種多様なシナリオにまたがって,因果林や多種多様なメタラーナーなどの共通手法の性能を評価する。
予測安定性と性能を向上させるために,複数の推定器を統合する2つの新しいアンサンブル手法を提案する。
論文 参考訳(メタデータ) (2024-07-04T07:23:02Z) - Semi-Supervised Health Index Monitoring with Feature Generation and Fusion [7.387226437589184]
健康指数(HI)は、システムの健康を評価するために重要であり、異常検出や安全クリティカルシステムに対する有用寿命(RUL)の予測といったタスクに重要である。
本研究では,Deep Semi-supervised Anomaly Detection (DeepSAD) を組み込んで,システムの健康状態に関連する特徴の抽出に挑戦する。
また, 等方性制約を持つ交互投影アルゴリズムを適用し, 埋め込みを正規化HIに変換する手法を提案する。
論文 参考訳(メタデータ) (2023-12-05T16:27:51Z) - Robustness and Generalization Performance of Deep Learning Models on
Cyber-Physical Systems: A Comparative Study [71.84852429039881]
調査は、センサーの故障やノイズなど、様々な摂動を扱うモデルの能力に焦点を当てている。
我々は,これらのモデルの一般化と伝達学習能力を,アウト・オブ・ディストリビューション(OOD)サンプルに公開することによって検証する。
論文 参考訳(メタデータ) (2023-06-13T12:43:59Z) - Learning From High-Dimensional Cyber-Physical Data Streams for
Diagnosing Faults in Smart Grids [4.616703548353371]
サイバー物理電力システムにおける故障診断は、データ品質に影響される。
これらのシステムは、過剰な計算コストでシステムを過大評価する大量のデータを生成する。
本稿では,機能工学が上記の課題を緩和する効果について述べる。
論文 参考訳(メタデータ) (2023-03-15T01:21:50Z) - Quality-Based Conditional Processing in Multi-Biometrics: Application to
Sensor Interoperability [63.05238390013457]
2007年のバイオセキュリティ・マルチモーダル・アセスメント・キャンペーンにおいて,ATVS-UAM融合手法を品質ベースで評価し,評価を行った。
我々のアプローチは線形ロジスティック回帰に基づいており、融合したスコアはログライクな比率になる傾向にある。
その結果,提案手法はルールベースの核融合方式よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-11-24T12:11:22Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
GradABM(GradABM)は、エージェントベースのモデリングのためのスケーラブルで微分可能な設計で、勾配に基づく学習と自動微分が可能である。
GradABMは、コモディティハードウェア上で数秒で数百万の人口をシミュレートし、ディープニューラルネットワークと統合し、異種データソースを取り込みます。
論文 参考訳(メタデータ) (2022-07-20T07:32:02Z) - Physics-Infused Fuzzy Generative Adversarial Network for Robust Failure
Prognosis [0.0]
ファジィGANに基づく手法はファジィ含意の集約に物理学に基づくモデルを組み込む。
ベアリング問題の結果は、GANの健康をモデル化する能力を改善するためにファジィ論理モデルに物理ベースのアグリゲーションを追加する効果を示す。
論文 参考訳(メタデータ) (2022-06-15T18:50:16Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
潜在ハイブリッドモデル(LHM)は、専門家が設計したODEのシステムと機械学習したNeural ODEを統合し、システムのダイナミクスを完全に記述する。
新型コロナウイルス患者のLHMと実世界の集中治療データについて検討した。
論文 参考訳(メタデータ) (2021-06-05T11:42:45Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
利用可能なデータがノイズの多い部分測定の場合,カオスダイナミクスシステムのデータ支援予測の問題を検討する。
動的システムの状態の部分的測定を用いることで、不完全な知識ベースモデルによる予測を改善するために機械学習モデルを訓練できることを示す。
論文 参考訳(メタデータ) (2021-02-15T19:56:48Z) - Machine Learning for Robust Identification of Complex Nonlinear
Dynamical Systems: Applications to Earth Systems Modeling [8.896888286819635]
カオスを示すシステムは地球科学の至るところに分布している。
システム同定は、気候科学における課題である。
我々は,気候科学におけるベンチマークモデルとして,2レベルロレンツ-96のカオスシステムを考える。
論文 参考訳(メタデータ) (2020-08-12T22:37:12Z) - SUOD: Accelerating Large-Scale Unsupervised Heterogeneous Outlier
Detection [63.253850875265115]
外乱検出(OD)は、一般的なサンプルから異常物体を識別するための機械学習(ML)タスクである。
そこで我々は,SUODと呼ばれるモジュール型加速度システムを提案する。
論文 参考訳(メタデータ) (2020-03-11T00:22:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。