論文の概要: Seeds of Stereotypes: A Large-Scale Textual Analysis of Race and Gender Associations with Diseases in Online Sources
- arxiv url: http://arxiv.org/abs/2405.05049v1
- Date: Wed, 8 May 2024 13:38:56 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-09 14:24:42.476386
- Title: Seeds of Stereotypes: A Large-Scale Textual Analysis of Race and Gender Associations with Diseases in Online Sources
- Title(参考訳): ステレオタイプのシード:オンラインソースにおける人種とジェンダーの関連性に関する大規模テキスト分析
- Authors: Lasse Hyldig Hansen, Nikolaj Andersen, Jack Gallifant, Liam G. McCoy, James K Stone, Nura Izath, Marcela Aguirre-Jerez, Danielle S Bitterman, Judy Gichoya, Leo Anthony Celi,
- Abstract要約: 本研究は、人種や性別の指標とともに様々な疾患が議論される状況を分析した。
その結果、人口統計学用語は、オンラインテキストの特定の疾患概念と不均等に関連していることがわかった。
我々は、特定の人種的・性別的用語と分析された18の疾患の関連において、幅広い相違を見出した。
- 参考スコア(独自算出の注目度): 1.8259644946867188
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background Advancements in Large Language Models (LLMs) hold transformative potential in healthcare, however, recent work has raised concern about the tendency of these models to produce outputs that display racial or gender biases. Although training data is a likely source of such biases, exploration of disease and demographic associations in text data at scale has been limited. Methods We conducted a large-scale textual analysis using a dataset comprising diverse web sources, including Arxiv, Wikipedia, and Common Crawl. The study analyzed the context in which various diseases are discussed alongside markers of race and gender. Given that LLMs are pre-trained on similar datasets, this approach allowed us to examine the potential biases that LLMs may learn and internalize. We compared these findings with actual demographic disease prevalence as well as GPT-4 outputs in order to evaluate the extent of bias representation. Results Our findings indicate that demographic terms are disproportionately associated with specific disease concepts in online texts. gender terms are prominently associated with disease concepts, while racial terms are much less frequently associated. We find widespread disparities in the associations of specific racial and gender terms with the 18 diseases analyzed. Most prominently, we see an overall significant overrepresentation of Black race mentions in comparison to population proportions. Conclusions Our results highlight the need for critical examination and transparent reporting of biases in LLM pretraining datasets. Our study suggests the need to develop mitigation strategies to counteract the influence of biased training data in LLMs, particularly in sensitive domains such as healthcare.
- Abstract(参考訳): 大規模言語モデル(LLM)の背景には、医療における変革的なポテンシャルがあるが、近年の研究では、これらのモデルが人種や性別の偏見を示すアウトプットを生成する傾向が懸念されている。
トレーニングデータはそのようなバイアスの原因である可能性が高いが、テキストデータの大規模化による病気や人口統計学的関連の探索は限られている。
提案手法は,Arxiv,Wikipedia,Common Crawlなど多種多様なWebソースからなるデータセットを用いて大規模テキスト解析を行った。
本研究は、人種や性別の指標とともに様々な疾患が議論される状況を分析した。
LLMは類似したデータセットで事前トレーニングされているので、このアプローチはLLMが学習し内部化する可能性のある潜在的なバイアスを調べることができる。
以上の結果と, GPT-4 出力との比較を行い, 偏りの程度について検討した。
以上の結果から, 人口統計学用語は, オンラインテキストの特定の疾患概念と相容れないことが示唆された。
ジェンダー用語は病気の概念と顕著に関連付けられているのに対し、人種用語はより少ない頻度で関連付けられている。
我々は、特定の人種的・性別的用語と分析された18の疾患の関連において、幅広い相違を見出した。
最も顕著なのは、人口比率と比較して、黒人人種の言及が全体的に顕著に過剰に表現されていることだ。
結論 この結果は, LLM事前学習データセットにおける批判的検査の必要性と, バイアスの透過的な報告の必要性を浮き彫りにした。
本研究は, LLM, 特に医療などのセンシティブな領域において, 偏りのあるトレーニングデータの影響を抑えるための緩和戦略を開発する必要があることを示唆している。
関連論文リスト
- Robustness and Confounders in the Demographic Alignment of LLMs with Human Perceptions of Offensiveness [10.194622474615462]
大規模言語モデル(LLM)は人口統計学的バイアスを示すことが知られているが、複数のデータセットにまたがってこれらのバイアスを体系的に評価する研究は少ない。
以上の結果から、人口統計学的特徴、特に人種、影響のアライメントはデータセット間で矛盾し、しばしば他の要因と絡み合っていることが明らかとなった。
論文 参考訳(メタデータ) (2024-11-13T19:08:23Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
本稿では,GenderBias-emphVLベンチマークを用いて,大規模視覚言語モデルにおける職業関連性バイアスの評価を行う。
ベンチマークを用いて15のオープンソースLVLMと最先端の商用APIを広範囲に評価した。
既存のLVLMでは男女差が広くみられた。
論文 参考訳(メタデータ) (2024-06-30T05:55:15Z) - The Factuality Tax of Diversity-Intervened Text-to-Image Generation: Benchmark and Fact-Augmented Intervention [61.80236015147771]
我々は多様性の介入とT2Iモデルにおける人口統計学的事実性とのトレードオフを定量化する。
DoFaiRの実験では、多様性指向の指示によって、性別や人種の異なる集団の数が増加することが明らかになった。
本研究では,歴史における世代ごとのジェンダーや人種構成について,言語化された事実情報を反映したFact-Augmented Intervention (FAI)を提案する。
論文 参考訳(メタデータ) (2024-06-29T09:09:42Z) - Understanding Intrinsic Socioeconomic Biases in Large Language Models [4.276697874428501]
本稿では,社会経済的バイアスを定量化するために,100万の英語文からなる新しいデータセットを提案する。
以上の結果から,GPT-2のような確立されたモデルと,Llama 2やFalconのような最先端のモデルの両方において,社会経済的バイアスが広範にあることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-28T23:54:44Z) - Cross-Care: Assessing the Healthcare Implications of Pre-training Data on Language Model Bias [3.455189439319919]
大規模な言語モデル(LLM)におけるバイアスと実世界の知識を評価するための最初のベンチマークフレームワークであるCross-Careを紹介する。
ThePile$のような事前学習コーパスに埋め込まれた人口統計バイアスがLLMの出力にどのように影響するかを評価する。
以上の結果から, LLMの病状有病率と, 集団間での実際の病状有病率との相違が明らかとなった。
論文 参考訳(メタデータ) (2024-05-09T02:33:14Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - Aligning with Whom? Large Language Models Have Gender and Racial Biases
in Subjective NLP Tasks [15.015148115215315]
我々は4つのポピュラーな大言語モデル(LLM)の実験を行い、集団差と潜在的なバイアスを理解する能力について、丁寧さと不快さの予測について検討する。
どちらのタスクでも、モデル予測は白人と女性の参加者のラベルに近いことが分かりました。
より具体的には、"ブラック"と"アジア"個人の観点から反応するよう促された場合、モデルは、対応するグループからのスコアだけでなく、全体的なスコアを予測する際のパフォーマンスを低下させる。
論文 参考訳(メタデータ) (2023-11-16T10:02:24Z) - Exploring the Jungle of Bias: Political Bias Attribution in Language Models via Dependency Analysis [86.49858739347412]
大規模言語モデル(LLM)は、これらのモデルにおけるバイアスの頻度とその緩和に関する激しい議論を引き起こしている。
本稿では,意思決定プロセスに寄与する属性の抽出と仲介を行うためのプロンプトベースの手法を提案する。
観察された異なる治療は、少なくとも部分的には、属性の相違とモデルの相違によるものであることが判明した。
論文 参考訳(メタデータ) (2023-11-15T00:02:25Z) - Bias and Fairness in Large Language Models: A Survey [73.87651986156006]
本稿では,大規模言語モデル(LLM)のバイアス評価と緩和手法に関する総合的な調査を行う。
まず、自然言語処理における社会的偏見と公平性の概念を統合し、形式化し、拡張する。
次に,3つの直感的な2つのバイアス評価法と1つの緩和法を提案し,文献を統一する。
論文 参考訳(メタデータ) (2023-09-02T00:32:55Z) - Towards Understanding and Mitigating Social Biases in Language Models [107.82654101403264]
大規模事前訓練言語モデル(LM)は、望ましくない表現バイアスを示すのに潜在的に危険である。
テキスト生成における社会的バイアスを軽減するためのステップを提案する。
我々の経験的結果と人的評価は、重要な文脈情報を保持しながらバイアスを緩和する効果を示す。
論文 参考訳(メタデータ) (2021-06-24T17:52:43Z) - Gender and Racial Fairness in Depression Research using Social Media [13.512136878021854]
ソーシャルメディアデータは、計算レンズからメンタルヘルス研究への関心を高めました。
これまでの研究では、このデータから生成されたモデルのバイアスが懸念されている。
我々の研究は、将来の研究でこれらのバイアスを避けるための推奨事項で締めくくっている。
論文 参考訳(メタデータ) (2021-03-18T22:34:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。