Chemistry Beyond Exact Solutions on a Quantum-Centric Supercomputer
- URL: http://arxiv.org/abs/2405.05068v2
- Date: Thu, 14 Nov 2024 16:59:50 GMT
- Title: Chemistry Beyond Exact Solutions on a Quantum-Centric Supercomputer
- Authors: Javier Robledo-Moreno, Mario Motta, Holger Haas, Ali Javadi-Abhari, Petar Jurcevic, William Kirby, Simon Martiel, Kunal Sharma, Sandeep Sharma, Tomonori Shirakawa, Iskandar Sitdikov, Rong-Yang Sun, Kevin J. Sung, Maika Takita, Minh C. Tran, Seiji Yunoki, Antonio Mezzacapo,
- Abstract summary: A universal quantum computer can be used as a simulator capable of predicting properties of diverse quantum systems.
Electronic structure problems in chemistry offer practical use cases around the hundredqubit mark.
For pre-fault-tolerant quantum processors, the large number of measurements to estimate molecular energies leads to prohibitive runtimes.
- Score: 2.562863293556441
- License:
- Abstract: A universal quantum computer can be used as a simulator capable of predicting properties of diverse quantum systems. Electronic structure problems in chemistry offer practical use cases around the hundred-qubit mark. This appears promising since current quantum processors have reached these sizes. However, mapping these use cases onto quantum computers yields deep circuits, and for pre-fault-tolerant quantum processors, the large number of measurements to estimate molecular energies leads to prohibitive runtimes. As a result, realistic chemistry is out of reach of current quantum computers in isolation. A natural question is whether classical distributed computation can relieve quantum processors from parsing all but a core, intrinsically quantum component of a chemistry workflow. Here, we incorporate quantum computations of chemistry in a quantum-centric supercomputing architecture, using up to 6400 nodes of the supercomputer Fugaku to assist a quantum computer with a Heron superconducting processor. We simulate the N$_2$ triple bond breaking in a correlation-consistent cc-pVDZ basis set, and the active-space electronic structure of [2Fe-2S] and [4Fe-4S] clusters, using 58, 45 and 77 qubits respectively, with quantum circuits of up to 10570 (3590 2-qubit) quantum gates. We obtain our results using a class of quantum circuits that approximates molecular eigenstates, and a hybrid estimator. The estimator processes quantum samples, produces upper bounds to the ground-state energy and wavefunctions supported on a polynomial number of states. This guarantees an unconditional quality metric for quantum advantage, certifiable by classical computers at polynomial cost. For current error rates, our results show that classical distributed computing coupled to quantum computers can produce good approximate solutions for practical problems beyond sizes amenable to exact diagonalization.
Related papers
- A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Towards practical and massively parallel quantum computing emulation for
quantum chemistry [10.095945254794906]
Quantum computing is moving beyond its early stage and seeking for commercial applications in chemical and biomedical sciences.
It is valuable to emulate quantum computing on classical computers for developing quantum algorithms and validating quantum hardware.
Here we demonstrate a high-performance and massively parallel variational quantum eigensolver simulator based on matrix product states.
arXiv Detail & Related papers (2023-03-07T06:44:18Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Kernel-Function Based Quantum Algorithms for Finite Temperature Quantum
Simulation [5.188498150496968]
We present a quantum kernel function (QKFE) algorithm for solving thermodynamic properties of quantum many-body systems.
As compared to its classical counterpart, namely the kernel method (KPM), QKFE has an exponential advantage in the cost of both time and memory.
We demonstrate its efficiency with applications to one and two-dimensional quantum spin models, and a fermionic lattice.
arXiv Detail & Related papers (2022-02-02T18:00:04Z) - Quantum design for advanced qubits: plasmonium [4.51227657808872]
We demonstrate variational quantum eigensolvers to simulate superconducting quantum circuits with varying parameters covering a plasmon-transition regime.
We fabricate an advanced post-transmon qubit, "plasmonium", which exhibits high single- and two-qubit gate fidelities.
Our work opens the way to designing advanced quantum processors using existing quantum computing resources.
arXiv Detail & Related papers (2021-09-02T14:48:39Z) - Calculation of the ground-state Stark effect in small molecules using
the variational quantum eigensolver [0.0]
We study a quantum simulation for the hydrogen (H2) and lithium hydride (LiH) molecules, at an actual commercially available quantum computer, the IBM Q.
Using the Variational Quantum Eigensolver (VQE) method, we study the molecule's ground state energy versus interatomic distance, under the action of stationary electric fields.
arXiv Detail & Related papers (2021-03-22T11:49:42Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.