Towards practical and massively parallel quantum computing emulation for
quantum chemistry
- URL: http://arxiv.org/abs/2303.03681v1
- Date: Tue, 7 Mar 2023 06:44:18 GMT
- Title: Towards practical and massively parallel quantum computing emulation for
quantum chemistry
- Authors: Honghui Shang, Yi Fan, Li Shen, Chu Guo, Jie Liu, Xiaohui Duan, Fang
Li, Zhenyu Li
- Abstract summary: Quantum computing is moving beyond its early stage and seeking for commercial applications in chemical and biomedical sciences.
It is valuable to emulate quantum computing on classical computers for developing quantum algorithms and validating quantum hardware.
Here we demonstrate a high-performance and massively parallel variational quantum eigensolver simulator based on matrix product states.
- Score: 10.095945254794906
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing is moving beyond its early stage and seeking for commercial
applications in chemical and biomedical sciences. In the current noisy
intermediate-scale quantum computing era, quantum resource is too scarce to
support these explorations. Therefore, it is valuable to emulate quantum
computing on classical computers for developing quantum algorithms and
validating quantum hardware. However, existing simulators mostly suffer from
the memory bottleneck so developing the approaches for large-scale quantum
chemistry calculations remains challenging. Here we demonstrate a
high-performance and massively parallel variational quantum eigensolver (VQE)
simulator based on matrix product states, combined with embedding theory for
solving large-scale quantum computing emulation for quantum chemistry on HPC
platforms. We apply this method to study the torsional barrier of ethane and
the quantification of the protein-ligand interactions. Our largest simulation
reaches $1000$ qubits, and a performance of $216.9$ PFLOPS is achieved on a new
Sunway supercomputer, which sets the state-of-the-art for quantum computing
emulation for quantum chemistry
Related papers
- Application of Large Language Models to Quantum State Simulation [0.11666234644810894]
Currently, various quantum simulators provide powerful tools for researchers, but simulating quantum evolution with these simulators often incurs high time costs.
This paper details the process of constructing 1-qubit and 2-qubit quantum simulator models, extending to multiple qubits, and ultimately implementing a 3-qubit example.
Our study demonstrates that LLMs can effectively learn and predict the evolution patterns among quantum bits, with minimal error compared to the theoretical output states.
arXiv Detail & Related papers (2024-10-09T07:23:13Z) - Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Differentiable matrix product states for simulating variational quantum
computational chemistry [6.954927515599816]
We propose a parallelizable classical simulator for variational quantum eigensolver(VQE)
Our simulator seamlessly integrates the quantum circuit evolution into the classical auto-differentiation framework.
As applications, we use our simulator to study commonly used small molecules such as HF, LiH and H$$O, as well as larger molecules CO$$, BeH$ and H$_4$ with up to $40$ qubits.
arXiv Detail & Related papers (2022-11-15T08:36:26Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Towards Dynamic Simulations of Materials on Quantum Computers [1.2983395770828172]
This work lays a foundation for the promising study of a wide variety of quantum dynamics on near-future quantum computers.
We demonstrate successful simulation of nontrivial quantum dynamics on IBM's Q16 Melbourne quantum processor and Rigetti's Aspen quantum processor.
arXiv Detail & Related papers (2020-04-09T22:27:09Z) - Simulating quantum chemistry in the seniority-zero space on qubit-based
quantum computers [0.0]
We combine the so-called seniority-zero, or paired-electron, approximation of computational quantum chemistry with techniques for simulating molecular chemistry on gate-based quantum computers.
We show that using the freed-up quantum resources for increasing the basis set can lead to more accurate results and reductions in the necessary number of quantum computing runs.
arXiv Detail & Related papers (2020-01-31T19:44:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.