Conformal Semantic Image Segmentation: Post-hoc Quantification of Predictive Uncertainty
- URL: http://arxiv.org/abs/2405.05145v1
- Date: Tue, 16 Apr 2024 15:51:39 GMT
- Title: Conformal Semantic Image Segmentation: Post-hoc Quantification of Predictive Uncertainty
- Authors: Luca Mossina, Joseba Dalmau, Léo andéol,
- Abstract summary: We propose a post-hoc, computationally lightweight method to quantify predictive uncertainty in semantic image segmentation.
Our approach uses conformal prediction to generate statistically valid prediction sets that are guaranteed to include the ground-truth segmentation mask.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a post-hoc, computationally lightweight method to quantify predictive uncertainty in semantic image segmentation. Our approach uses conformal prediction to generate statistically valid prediction sets that are guaranteed to include the ground-truth segmentation mask at a predefined confidence level. We introduce a novel visualization technique of conformalized predictions based on heatmaps, and provide metrics to assess their empirical validity. We demonstrate the effectiveness of our approach on well-known benchmark datasets and image segmentation prediction models, and conclude with practical insights.
Related papers
- Conformal Prediction for Image Segmentation Using Morphological Prediction Sets [0.7673339435080445]
In this paper we focus on binary segmentation and address these challenges using conformal prediction.
Our approach involves computing nonconformity scores, a type of prediction residual, on held-out calibration data not used during training.
We evaluate our approach on several medical imaging applications.
arXiv Detail & Related papers (2025-03-07T17:42:30Z) - Provably Reliable Conformal Prediction Sets in the Presence of Data Poisoning [53.42244686183879]
Conformal prediction provides model-agnostic and distribution-free uncertainty quantification.
Yet, conformal prediction is not reliable under poisoning attacks where adversaries manipulate both training and calibration data.
We propose reliable prediction sets (RPS): the first efficient method for constructing conformal prediction sets with provable reliability guarantees under poisoning.
arXiv Detail & Related papers (2024-10-13T15:37:11Z) - Conformalized Interval Arithmetic with Symmetric Calibration [9.559062601251464]
We develop conformal prediction intervals for single target to the prediction interval for sum of multiple targets.
We show that our method outperforms existing conformalized approaches as well as non-conformal approaches.
arXiv Detail & Related papers (2024-08-20T15:27:18Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Robust Conformal Prediction Using Privileged Information [17.886554223172517]
We develop a method to generate prediction sets with a guaranteed coverage rate that is robust to corruptions in the training data.
Our approach builds on conformal prediction, a powerful framework to construct prediction sets that are valid under the i.i.d assumption.
arXiv Detail & Related papers (2024-06-08T08:56:47Z) - Predictive Inference with Feature Conformal Prediction [80.77443423828315]
We propose feature conformal prediction, which extends the scope of conformal prediction to semantic feature spaces.
From a theoretical perspective, we demonstrate that feature conformal prediction provably outperforms regular conformal prediction under mild assumptions.
Our approach could be combined with not only vanilla conformal prediction, but also other adaptive conformal prediction methods.
arXiv Detail & Related papers (2022-10-01T02:57:37Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Learning Accurate Dense Correspondences and When to Trust Them [161.76275845530964]
We aim to estimate a dense flow field relating two images, coupled with a robust pixel-wise confidence map.
We develop a flexible probabilistic approach that jointly learns the flow prediction and its uncertainty.
Our approach obtains state-of-the-art results on challenging geometric matching and optical flow datasets.
arXiv Detail & Related papers (2021-01-05T18:54:11Z) - Probabilistic Deep Learning for Instance Segmentation [9.62543698736491]
We propose a generic method to obtain model-inherent uncertainty estimates within proposal-free instance segmentation models.
We evaluate our method on the BBBC010 C. elegans dataset, where it yields competitive performance.
arXiv Detail & Related papers (2020-08-24T19:51:48Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
We propose a generic and efficient segmentation framework to construct ensemble segmentation models.
In the proposed method, ensemble models can be efficiently generated by using the layer selection method.
We also devise a new pixel-wise uncertainty loss, which improves the predictive performance.
arXiv Detail & Related papers (2020-05-21T16:08:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.