Attention-Driven Training-Free Efficiency Enhancement of Diffusion Models
- URL: http://arxiv.org/abs/2405.05252v1
- Date: Wed, 8 May 2024 17:56:47 GMT
- Title: Attention-Driven Training-Free Efficiency Enhancement of Diffusion Models
- Authors: Hongjie Wang, Difan Liu, Yan Kang, Yijun Li, Zhe Lin, Niraj K. Jha, Yuchen Liu,
- Abstract summary: Diffusion Models (DMs) have exhibited superior performance in generating high-quality and diverse images.
Existing works mainly adopt a retraining process to enhance DM efficiency.
We introduce the Attention-driven Training-free Efficient Diffusion Model (AT-EDM) framework that leverages attention maps to perform run-time pruning of redundant tokens.
- Score: 29.863953001061635
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion Models (DMs) have exhibited superior performance in generating high-quality and diverse images. However, this exceptional performance comes at the cost of expensive architectural design, particularly due to the attention module heavily used in leading models. Existing works mainly adopt a retraining process to enhance DM efficiency. This is computationally expensive and not very scalable. To this end, we introduce the Attention-driven Training-free Efficient Diffusion Model (AT-EDM) framework that leverages attention maps to perform run-time pruning of redundant tokens, without the need for any retraining. Specifically, for single-denoising-step pruning, we develop a novel ranking algorithm, Generalized Weighted Page Rank (G-WPR), to identify redundant tokens, and a similarity-based recovery method to restore tokens for the convolution operation. In addition, we propose a Denoising-Steps-Aware Pruning (DSAP) approach to adjust the pruning budget across different denoising timesteps for better generation quality. Extensive evaluations show that AT-EDM performs favorably against prior art in terms of efficiency (e.g., 38.8% FLOPs saving and up to 1.53x speed-up over Stable Diffusion XL) while maintaining nearly the same FID and CLIP scores as the full model. Project webpage: https://atedm.github.io.
Related papers
- PAT: Pruning-Aware Tuning for Large Language Models [19.622152991641045]
Large language models excel in language tasks, especially with supervised fine-tuning after pre-training.
Traditional post-hoc pruning often leads to significant performance loss.
We propose the Pruning-Aware Tuning (PAT) paradigm to eliminate model redundancy.
arXiv Detail & Related papers (2024-08-27T01:04:14Z) - LD-Pruner: Efficient Pruning of Latent Diffusion Models using Task-Agnostic Insights [2.8461446020965435]
We introduce LD-Pruner, a novel performance-preserving structured pruning method for compressing Latent Diffusion Models.
We demonstrate the effectiveness of our approach on three different tasks: text-to-image (T2I) generation, Unconditional Image Generation (UIG) and Unconditional Audio Generation (UAG)
arXiv Detail & Related papers (2024-04-18T06:35:37Z) - Progressive Gradient Flow for Robust N:M Sparsity Training in
Transformers [15.27677493050638]
N:M structured sparsity has garnered significant interest as a result of relatively modest overhead and improved efficiency.
There have been efforts to develop training recipes for N:M structured sparsity, they primarily focus on low-sparsity regions.
However, performance of models trained using these approaches tends to decline when confronted with high-sparsity regions.
arXiv Detail & Related papers (2024-02-07T10:55:59Z) - A-SDM: Accelerating Stable Diffusion through Redundancy Removal and
Performance Optimization [54.113083217869516]
In this work, we first explore the computational redundancy part of the network.
We then prune the redundancy blocks of the model and maintain the network performance.
Thirdly, we propose a global-regional interactive (GRI) attention to speed up the computationally intensive attention part.
arXiv Detail & Related papers (2023-12-24T15:37:47Z) - Not All Steps are Equal: Efficient Generation with Progressive Diffusion
Models [62.155612146799314]
We propose a novel two-stage training strategy termed Step-Adaptive Training.
In the initial stage, a base denoising model is trained to encompass all timesteps.
We partition the timesteps into distinct groups, fine-tuning the model within each group to achieve specialized denoising capabilities.
arXiv Detail & Related papers (2023-12-20T03:32:58Z) - FRDiff : Feature Reuse for Universal Training-free Acceleration of Diffusion Models [16.940023904740585]
We introduce an advanced acceleration technique that leverages the temporal redundancy inherent in diffusion models.
Reusing feature maps with high temporal similarity opens up a new opportunity to save computation resources without compromising output quality.
arXiv Detail & Related papers (2023-12-06T14:24:26Z) - The Missing U for Efficient Diffusion Models [3.712196074875643]
Diffusion Probabilistic Models yield record-breaking performance in tasks such as image synthesis, video generation, and molecule design.
Despite their capabilities, their efficiency, especially in the reverse process, remains a challenge due to slow convergence rates and high computational costs.
We introduce an approach that leverages continuous dynamical systems to design a novel denoising network for diffusion models.
arXiv Detail & Related papers (2023-10-31T00:12:14Z) - Fast-ELECTRA for Efficient Pre-training [83.29484808667532]
ELECTRA pre-trains language models by detecting tokens in a sequence that have been replaced by an auxiliary model.
We propose Fast-ELECTRA, which leverages an existing language model as the auxiliary model.
Our approach rivals the performance of state-of-the-art ELECTRA-style pre-training methods, while significantly eliminating the computation and memory cost brought by the joint training of the auxiliary model.
arXiv Detail & Related papers (2023-10-11T09:55:46Z) - BOOT: Data-free Distillation of Denoising Diffusion Models with
Bootstrapping [64.54271680071373]
Diffusion models have demonstrated excellent potential for generating diverse images.
Knowledge distillation has been recently proposed as a remedy that can reduce the number of inference steps to one or a few.
We present a novel technique called BOOT, that overcomes limitations with an efficient data-free distillation algorithm.
arXiv Detail & Related papers (2023-06-08T20:30:55Z) - Towards Practical Lipreading with Distilled and Efficient Models [57.41253104365274]
Lipreading has witnessed a lot of progress due to the resurgence of neural networks.
Recent works have placed emphasis on aspects such as improving performance by finding the optimal architecture or improving generalization.
There is still a significant gap between the current methodologies and the requirements for an effective deployment of lipreading in practical scenarios.
We propose a series of innovations that significantly bridge that gap: first, we raise the state-of-the-art performance by a wide margin on LRW and LRW-1000 to 88.5% and 46.6%, respectively using self-distillation.
arXiv Detail & Related papers (2020-07-13T16:56:27Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.