論文の概要: Harmonizing Program Induction with Rate-Distortion Theory
- arxiv url: http://arxiv.org/abs/2405.05294v1
- Date: Wed, 8 May 2024 10:03:50 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 15:12:05.306563
- Title: Harmonizing Program Induction with Rate-Distortion Theory
- Title(参考訳): 速度歪み理論を用いた高調波プログラム誘導
- Authors: Hanqi Zhou, David G. Nagy, Charley M. Wu,
- Abstract要約: 本稿では,レート,歪み,計算コストの3つのトレードオフを提案する。
タスク間で共有プログラムライブラリを構築することで、グローバルなメリットが得られます。
しかし、これは人間の学習者の特徴であるキュリキュラに対する感受性のコストが伴う。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many aspects of human learning have been proposed as a process of constructing mental programs: from acquiring symbolic number representations to intuitive theories about the world. In parallel, there is a long-tradition of using information processing to model human cognition through Rate Distortion Theory (RDT). Yet, it is still poorly understood how to apply RDT when mental representations take the form of programs. In this work, we adapt RDT by proposing a three way trade-off among rate (description length), distortion (error), and computational costs (search budget). We use simulations on a melody task to study the implications of this trade-off, and show that constructing a shared program library across tasks provides global benefits. However, this comes at the cost of sensitivity to curricula, which is also characteristic of human learners. Finally, we use methods from partial information decomposition to generate training curricula that induce more effective libraries and better generalization.
- Abstract(参考訳): 人間の学習の多くの側面は、記号数表現の取得から世界に関する直観的な理論まで、メンタルプログラムを構築するプロセスとして提案されている。
並行して、レート歪曲理論(RDT)を通じて、人間の認知をモデル化するために情報処理を用いる長い道のりがある。
しかし、メンタルな表現がプログラムの形式をとるときのRTTの適用方法はまだよく理解されていない。
本研究では,レート(記述長),歪み(エラー),計算コスト(検索予算)の3つのトレードオフを提案し,RTTを適用した。
我々は,メロディタスクにおけるシミュレーションを用いて,このトレードオフの意義について検討し,タスク間の共有プログラムライブラリの構築がグローバルな利益をもたらすことを示す。
しかし、これは人間の学習者の特徴でもあるキュリキュラに対する感受性のコストが伴う。
最後に、部分的な情報分解からの手法を用いて、より効果的なライブラリとより良い一般化をもたらす訓練カリキュラムを生成する。
関連論文リスト
- Offline Imitation Learning Through Graph Search and Retrieval [57.57306578140857]
模倣学習は、ロボットが操作スキルを取得するための強力な機械学習アルゴリズムである。
本稿では,グラフ検索と検索により,最適下実験から学習する,シンプルで効果的なアルゴリズムGSRを提案する。
GSRは、ベースラインに比べて10%から30%高い成功率、30%以上の熟練を達成できる。
論文 参考訳(メタデータ) (2024-07-22T06:12:21Z) - Neural Causal Abstractions [63.21695740637627]
我々は、変数とそのドメインをクラスタリングすることで、因果抽象化の新しいファミリーを開発する。
本稿では,ニューラルネットワークモデルを用いて,そのような抽象化が現実的に学習可能であることを示す。
本実験は、画像データを含む高次元設定に因果推論をスケールする方法を記述し、その理論を支持する。
論文 参考訳(メタデータ) (2024-01-05T02:00:27Z) - Continual Zero-Shot Learning through Semantically Guided Generative
Random Walks [56.65465792750822]
生成モデルを利用して、学習中に見えない情報が提供されない連続ゼロショット学習の課題に対処する。
本稿では,新しい意味誘導型生成ランダムウォーク(GRW)損失を用いた学習アルゴリズムを提案する。
提案アルゴリズムは,AWA1,AWA2,CUB,SUNデータセットの最先端性能を達成し,既存のCZSL手法を3~7%上回る結果を得た。
論文 参考訳(メタデータ) (2023-08-23T18:10:12Z) - Self-Supervised Learning with Lie Symmetries for Partial Differential
Equations [25.584036829191902]
我々は、自己教師付き学習(SSL)のための共同埋め込み手法を実装することにより、PDEの汎用表現を学習する。
我々の表現は、PDEの係数の回帰などの不変タスクに対するベースラインアプローチよりも優れており、また、ニューラルソルバのタイムステッピング性能も向上している。
提案手法がPDEの汎用基盤モデルの開発に有効であることを期待する。
論文 参考訳(メタデータ) (2023-07-11T16:52:22Z) - From Perception to Programs: Regularize, Overparameterize, and Amortize [21.221244694737134]
ニューラルネットによる知覚入力を低次元の解釈可能な表現に解析し、次に合成プログラムで処理するニューロシンボリックプログラム合成技術を開発した。
問題を緩和し,全モジュールを勾配勾配でエンドツーエンドに学習する手法について検討する。
このツールボックスは、勾配誘導型プログラム探索の安定性を改善し、入力を離散抽象として知覚する方法と、それらの抽象をプログラムとして象徴的に処理する方法の両方を学ぶ方法を提案する。
論文 参考訳(メタデータ) (2022-06-13T06:27:11Z) - Neuro-Symbolic Learning of Answer Set Programs from Raw Data [54.56905063752427]
Neuro-Symbolic AIは、シンボリックテクニックの解釈可能性と、生データから学ぶ深層学習の能力を組み合わせることを目的としている。
本稿では,ニューラルネットワークを用いて生データから潜在概念を抽出するNSIL(Neuro-Symbolic Inductive Learner)を提案する。
NSILは表現力のある知識を学習し、計算的に複雑な問題を解き、精度とデータ効率の観点から最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-05-25T12:41:59Z) - Decomposed Inductive Procedure Learning [2.421459418045937]
我々は、分解帰納的手続き学習(DIPL)の理論を定式化する。
DIPLは、教育的に関係のあるタスクを学習するエージェントを構築するために、様々な形の帰納的シンボリックラーニングがどのように使用できるかを概説している。
人間の学習能力を示すエージェントをDIPLで作成できることを実証する。
論文 参考訳(メタデータ) (2021-10-25T19:36:03Z) - On the Theory of Reinforcement Learning with Once-per-Episode Feedback [120.5537226120512]
本稿では,エピソード終盤に一度だけフィードバックを受ける強化学習の理論を紹介する。
これは、学習者が毎回フィードバックを受け取るという従来の要件よりも、現実世界のアプリケーションの代表的です。
論文 参考訳(メタデータ) (2021-05-29T19:48:51Z) - Interpretable Reinforcement Learning Inspired by Piaget's Theory of
Cognitive Development [1.7778609937758327]
本稿では,思考の言語(LOTH)やスクリプト理論,ピアジェの認知発達理論などの理論が相補的なアプローチを提供するという考えを楽しませる。
提案するフレームワークは,人工知能システムにおいて,人間のような認知を実現するためのステップとみなすことができる。
論文 参考訳(メタデータ) (2021-02-01T00:29:01Z) - Human Trajectory Forecasting in Crowds: A Deep Learning Perspective [89.4600982169]
本稿では,既存の深層学習に基づくソーシャルインタラクションのモデル化手法について詳細に分析する。
本稿では、これらの社会的相互作用を効果的に捉えるための知識に基づく2つのデータ駆動手法を提案する。
我々は,人間の軌道予測分野において,重要かつ欠落したコンポーネントであるTrajNet++を大規模に開発する。
論文 参考訳(メタデータ) (2020-07-07T17:19:56Z) - Accelerating Reinforcement Learning Agent with EEG-based Implicit Human
Feedback [10.138798960466222]
人間のフィードバックによる強化学習(RL)エージェントは、学習のさまざまな側面を劇的に改善することができる。
従来の方法では、人間の観察者が明示的に入力をし、RLエージェントの学習プロセスのループで人間を負担する必要があった。
脳波による人間の内因性反応を、エラー関連電位(ErrP)の形で暗黙の(そして自然な)フィードバックとして捉えることを検討する。
論文 参考訳(メタデータ) (2020-06-30T03:13:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。