論文の概要: Spin(ing) into the classroom: Quantum spin activities for Year 6-10 physics
- arxiv url: http://arxiv.org/abs/2405.05528v1
- Date: Thu, 9 May 2024 03:44:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 14:12:43.937626
- Title: Spin(ing) into the classroom: Quantum spin activities for Year 6-10 physics
- Title(参考訳): 教室へのスピン(ing):6-10年物理のための量子スピン活動
- Authors: Kyla Adams, Anastasia Lonshakova, David Blair, David Treagust, Tejinder Kaur,
- Abstract要約: 量子スピンは医療画像、量子コンピューティング、および多くの将来の技術を支える。
これらの玩具は、中学生に量子世界への容易に理解可能な窓を提供することができる。
- 参考スコア(独自算出の注目度): 0.1906498126334485
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Quantum science is in the news daily and engages student interest and curiosity. A fundamental quantum science concept that underpins medical imaging, quantum computing and many future technologies is quantum spin. Quantum spin can explain many physical phenomena that are in the lower secondary school curriculum, such as magnetism and light, making its inclusion a great motivator for students. Here we present an activity sequence for teaching quantum spin in the classroom using spinning tops and gyroscopes to highlight the common properties of classical angular momentum and quantum spin. These toys can provide an easily understood window to the quantum world for lower secondary school students. Students who have engaged in these activities reported enjoying the content and appreciating its relevance.
- Abstract(参考訳): 量子科学はニュースに毎日入っており、学生の興味と好奇心を抱いている。
医療画像、量子コンピューティング、そして多くの未来の技術を支える基本的な量子科学の概念は量子スピンである。
量子スピンは、磁気学や光などの中等教育課程にある多くの物理現象を説明でき、学生にとって大きな動機づけとなる。
ここでは、古典的な角運動量と量子スピンの共通特性を明らかにするために、回転トップとジャイロスコープを用いて教室で量子スピンを教えるためのアクティビティシーケンスを示す。
これらの玩具は、中学生に量子世界への容易に理解可能な窓を提供することができる。
これらの活動に携わる学生は、その内容に満足し、その妥当性を高く評価していると報告した。
関連論文リスト
- A Short Guide to Quantum Mechanics -- Some Basic Principles [0.0]
量子物理学が重要か、奇妙か、理解不能か、という問いから始まります。
これはなぜ粒子が波のように振る舞うのか、また不確実性やランダム性が物理学に入るのかを説明する。
磁気共鳴イメージング(MRI)や量子コンピューティングといった最近の話題も取り上げられている。
論文 参考訳(メタデータ) (2024-08-01T17:14:54Z) - Quantum Information Processing with Molecular Nanomagnets: an introduction [49.89725935672549]
本稿では,量子情報処理の導入について紹介する。
量子アルゴリズムを理解し設計するための基本的なツールを紹介し、分子スピンアーキテクチャ上での実際の実現を常に言及する。
分子スピンキュートハードウェア上で提案および実装された量子アルゴリズムの例を示す。
論文 参考訳(メタデータ) (2024-05-31T16:43:20Z) - A Physics Lab Inside Your Head: Quantum Thought Experiments as an
Educational Tool [0.0]
量子回路を用いて思考実験を提示することで、明らかな量子パラドックスを解き放つ方法を示す。
量子の最初の導入として、どのように思考実験を使用できるかを説明します。
11歳以上の高校生を対象とした「量子爆弾テスター」に基づくワークショップについて概説する。
論文 参考訳(メタデータ) (2023-12-13T02:09:26Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Quantum Science and the Search for Axion Dark Matter [91.3755431537592]
ダークマターパズルは現代の物理学において最も重要なオープン問題の一つである。
多数の精密実験が、アクシオンのようなダークマターの3つの非重力相互作用を探索している。
論文 参考訳(メタデータ) (2023-04-24T02:52:56Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
古典的な機械学習アプローチが量子コンピュータの設備改善にどのように役立つかを示す。
量子アルゴリズムと量子コンピュータは、古典的な機械学習タスクを解くのにどのように役立つかについて議論する。
論文 参考訳(メタデータ) (2023-01-04T23:37:45Z) - The Physics of Quantum Information [0.0]
量子コンピュータ科学、量子ハードウェア、量子物質、量子重力の4つのテーマについてレビューします。
長期的には、非常に複雑な量子物質を制御することは、深い科学的進歩と強力な新しい技術への扉を開くだろう。
論文 参考訳(メタデータ) (2022-08-17T04:35:36Z) - Recent Advances for Quantum Neural Networks in Generative Learning [98.88205308106778]
量子生成学習モデル(QGLM)は、古典的な学習モデルを上回る可能性がある。
機械学習の観点からQGLMの現状を概観する。
従来の機械学習タスクと量子物理学の両方におけるQGLMの潜在的な応用について論じる。
論文 参考訳(メタデータ) (2022-06-07T07:32:57Z) - Mesoscopic Quantum Thermo-mechanics: a new frontier of experimental
physics [0.0]
実験者は、メソスコピック・オブジェクト内のメカニカル・モードを量子レベルまで制御できることを実証した。
メカニカルフォック状態を作成したり、異なる物体から機械的モードを絡ませたり、量子情報を保存したり、ある量子ビットから別の量子ビットへ転送したりすることが可能になった。
これらの全ては、特に量子技術のための新しいエンジニアリングリソースとして言及されている。
論文 参考訳(メタデータ) (2022-04-20T13:35:13Z) - Endless Fun in high dimensions -- A Quantum Card Game [0.0]
本稿では,量子コンピュータのビルディングブロックを体験できる戦略カードゲームを提案する。
プレイ中、参加者は最低の量子状態から始まり、カードをプレイして量子コンピュータを「プログラム」し、可能な限り高い量子状態を達成することを目指す。
高次元の量子状態、すなわち2つ以上の可能な値を取ることができるシステムを含めることで、ゲームはプレイヤーが複雑な量子状態の操作を理解するのに役立つ。
論文 参考訳(メタデータ) (2021-07-26T07:52:13Z) - Standard Model Physics and the Digital Quantum Revolution: Thoughts
about the Interface [68.8204255655161]
量子システムの分離・制御・絡み合いの進歩は、かつての量子力学の興味深い特徴を、破壊的な科学的・技術的進歩のための乗り物へと変えつつある。
本稿では,3つの領域科学理論家の視点から,絡み合い,複雑性,量子シミュレーションのインターフェースについて考察する。
論文 参考訳(メタデータ) (2021-07-10T06:12:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。