論文の概要: An Efficient Finite Difference Approximation via a Double Sample-Recycling Approach
- arxiv url: http://arxiv.org/abs/2405.05638v1
- Date: Thu, 9 May 2024 09:27:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 13:52:35.635051
- Title: An Efficient Finite Difference Approximation via a Double Sample-Recycling Approach
- Title(参考訳): 二重リサイクル法による効率的な有限差分近似
- Authors: Guo Liang, Guangwu Liu, Kun Zhang,
- Abstract要約: 本稿では, 二重リサイクル手法を提案する。
パイロットサンプルは最適な摂動を推定するためにリサイクルされる。
新しいサンプルを生成すると 効率的な有限差分推定器が生成される
- 参考スコア(独自算出の注目度): 6.054123928890574
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Estimating stochastic gradients is pivotal in fields like service systems within operations research. The classical method for this estimation is the finite difference approximation, which entails generating samples at perturbed inputs. Nonetheless, practical challenges persist in determining the perturbation and obtaining an optimal finite difference estimator in the sense of possessing the smallest mean squared error (MSE). To tackle this problem, we propose a double sample-recycling approach in this paper. Firstly, pilot samples are recycled to estimate the optimal perturbation. Secondly, recycling these pilot samples again and generating new samples at the estimated perturbation, lead to an efficient finite difference estimator. We analyze its bias, variance and MSE. Our analyses demonstrate a reduction in asymptotic variance, and in some cases, a decrease in asymptotic bias, compared to the optimal finite difference estimator. Therefore, our proposed estimator consistently coincides with, or even outperforms the optimal finite difference estimator. In numerical experiments, we apply the estimator in several examples, and numerical results demonstrate its robustness, as well as coincidence with the theory presented, especially in the case of small sample sizes.
- Abstract(参考訳): 確率勾配の推定は、オペレーション研究におけるサービスシステムのような分野において重要である。
この推定の古典的な方法は、摂動入力でサンプルを生成する有限差分近似である。
それでも、摂動を決定づけ、最小平均二乗誤差(MSE)を持つという意味で最適な有限差分推定器を得るという実践的な課題は続いている。
この問題に対処するため,本論文ではサンプルリサイクルの2つのアプローチを提案する。
まず、最適な摂動を推定するために、パイロットサンプルをリサイクルする。
第二に、これらのサンプルを再びリサイクルし、推定された摂動で新しいサンプルを生成し、効率的な有限差分推定器を生み出す。
私たちはそのバイアス、分散、MSEを分析します。
本分析は, 漸近的変動の減少を示すものであり, 場合によっては, 最適有限差分推定器と比較して漸近的バイアスの減少を示すものである。
したがって、提案した推定器は、常に一致するか、最適有限差分推定器よりも優れている。
数値実験では、いくつかの例に推定器を適用し、数値的な結果は、その頑健さと、その理論、特に小さなサンプルサイズの場合の一致を実証する。
関連論文リスト
- Scalable method for Bayesian experimental design without integrating
over posterior distribution [0.0]
実験問題のA-最適ベイズ設計における計算効率について検討する。
A-最適性はベイズの実験設計に広く用いられ、容易に解釈できる基準である。
本研究は, A-Optimal 実験設計における新しい可能性のないアプローチを提案する。
論文 参考訳(メタデータ) (2023-06-30T12:40:43Z) - Detecting Adversarial Data by Probing Multiple Perturbations Using
Expected Perturbation Score [62.54911162109439]
逆方向検出は、自然分布と逆方向分布の差に基づいて、与えられたサンプルが逆方向であるかどうかを判定することを目的としている。
本研究では,様々な摂動後の標本の予測スコアであるEPS(pre expected perturbation score)を提案する。
EPSに基づく最大平均誤差(MMD)を,試験試料と自然試料との差を測定する指標として開発する。
論文 参考訳(メタデータ) (2023-05-25T13:14:58Z) - Off-policy estimation of linear functionals: Non-asymptotic theory for
semi-parametric efficiency [59.48096489854697]
観測データに基づいて線形汎関数を推定する問題は、因果推論と包帯文献の両方において標準的である。
このような手順の平均二乗誤差に対して非漸近上界を証明した。
非漸近的局所ミニマックス下限をマッチングすることにより、有限標本のインスタンス依存最適性を確立する。
論文 参考訳(メタデータ) (2022-09-26T23:50:55Z) - Learning to Estimate Without Bias [57.82628598276623]
ガウスの定理は、重み付き最小二乗推定器は線形モデルにおける線形最小分散アンバイアスド推定(MVUE)であると述べている。
本稿では、バイアス制約のあるディープラーニングを用いて、この結果を非線形設定に拡張する第一歩を踏み出す。
BCEの第二の動機は、同じ未知の複数の推定値が平均化されてパフォーマンスが向上するアプリケーションにおいてである。
論文 参考訳(メタデータ) (2021-10-24T10:23:51Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Accurate Characterization of Non-Uniformly Sampled Time Series using
Stochastic Differential Equations [0.0]
非均一サンプリングは、実験者が調査中のプロセスのサンプリング特性を完全に制御していない場合に発生する。
確率の数値最適化のための新しい初期推定法を提案する。
シミュレーション実験において,新しい推定器の精度が向上したことを示す。
論文 参考訳(メタデータ) (2020-07-02T13:03:09Z) - Minimax Optimal Estimation of KL Divergence for Continuous Distributions [56.29748742084386]
Kullback-Leibler の同一および独立に分布するサンプルからの発散は、様々な領域において重要な問題である。
単純で効果的な推定器の1つは、これらのサンプル間の近辺 k に基づいている。
論文 参考訳(メタデータ) (2020-02-26T16:37:37Z) - Asymptotic Analysis of Sampling Estimators for Randomized Numerical
Linear Algebra Algorithms [43.134933182911766]
最小二乗問題に対するRandNLAサンプリング推定器の分布を導出する解析法を開発した。
AAMSE(Asymptotic Mean Squared Error)とEAMSE(Asymsymotic Mean Squared Error)に基づく最適なサンプリング確率の同定を行った。
提案手法は, サンプリングプロセスにおけるレバレッジの役割を明らかにするとともに, 実験により既存の手法よりも改善したことを示す。
論文 参考訳(メタデータ) (2020-02-24T20:34:50Z) - Estimating Gradients for Discrete Random Variables by Sampling without
Replacement [93.09326095997336]
我々は、置換のないサンプリングに基づいて、離散確率変数に対する期待値の偏りのない推定器を導出する。
推定器は3つの異なる推定器のラオ・ブラックウェル化として導出可能であることを示す。
論文 参考訳(メタデータ) (2020-02-14T14:15:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。