論文の概要: Deploying Graph Neural Networks in Wireless Networks: A Link Stability Viewpoint
- arxiv url: http://arxiv.org/abs/2405.05802v1
- Date: Thu, 9 May 2024 14:37:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-10 13:02:50.719056
- Title: Deploying Graph Neural Networks in Wireless Networks: A Link Stability Viewpoint
- Title(参考訳): 無線ネットワークにおけるグラフニューラルネットワークの展開:リンク安定性の観点から
- Authors: Jun Li, Weiwei Zhang, Kang Wei, Guangji Chen, Long Shi, Wen Chen,
- Abstract要約: グラフニューラルネットワーク(GNN)は、幅広いグラフアプリケーションで有望なパフォーマンスを示している。
無線システムでは、ノード間の通信は通常、無線のフェードと受信機のノイズによりGNNが劣化する。
- 参考スコア(独自算出の注目度): 13.686715722390149
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As an emerging artificial intelligence technology, graph neural networks (GNNs) have exhibited promising performance across a wide range of graph-related applications. However, information exchanges among neighbor nodes in GNN pose new challenges in the resource-constrained scenario, especially in wireless systems. In practical wireless systems, the communication links among nodes are usually unreliable due to wireless fading and receiver noise, consequently resulting in performance degradation of GNNs. To improve the learning performance of GNNs, we aim to maximize the number of long-term average (LTA) communication links by the optimized power control under energy consumption constraints. Using the Lyapunov optimization method, we first transform the intractable long-term problem into a deterministic problem in each time slot by converting the long-term energy constraints into the objective function. In spite of this non-convex combinatorial optimization problem, we address this problem via equivalently solving a sequence of convex feasibility problems together with a greedy based solver. Simulation results demonstrate the superiority of our proposed scheme over the baselines.
- Abstract(参考訳): 新たな人工知能技術として、グラフニューラルネットワーク(GNN)は、幅広いグラフ関連アプリケーションで有望なパフォーマンスを示している。
しかし、GNN内の近隣ノード間の情報交換は、特に無線システムにおいて、資源制約のあるシナリオにおいて新たな課題を提起する。
実用的な無線システムでは、ノード間の通信リンクは無線のフェーディングや受信機ノイズにより信頼性が低く、結果としてGNNの性能が低下する。
GNNの学習性能を向上させるため,エネルギー消費制約下での最適化電力制御により,長期平均(LTA)通信リンク数を最大化することを目的とする。
Lyapunov最適化法を用いて, 長期エネルギー制約を目的関数に変換することにより, まず, 抽出可能な長期問題を各時間スロットにおける決定論的問題に変換する。
この非凸組合せ最適化問題にも拘わらず、グリーディに基づく解法とともに凸実現可能性問題の列を等価に解くことでこの問題に対処する。
シミュレーションの結果,提案手法がベースラインよりも優れていることを示す。
関連論文リスト
- Accelerating Graph Neural Networks via Edge Pruning for Power Allocation in Wireless Networks [9.031738020845586]
グラフニューラルネットワーク(GNN)は、無線ネットワークにおける電力割り当て問題に対処するための有望なアプローチとして登場した。
我々は,GNNの時間的複雑さを低減するために,近隣のしきい値を用いたアプローチを導入する。
以上の結果から,提案したN-GNNは,高い性能と一般化能力を維持しつつ,時間的複雑性を低減できるという利点があることがわかった。
論文 参考訳(メタデータ) (2023-05-22T02:22:14Z) - Graph Neural Networks for Power Allocation in Wireless Networks with
Full Duplex Nodes [10.150768420975155]
ユーザ間の相互干渉のため、無線ネットワークにおける電力割り当て問題はしばしば自明ではない。
グラフグラフニューラルネットワーク(GNN)は、これらの問題に対処するための有望なアプローチとして最近登場し、無線ネットワークの基盤となるトポロジを活用するアプローチである。
論文 参考訳(メタデータ) (2023-03-27T10:59:09Z) - Flex-Net: A Graph Neural Network Approach to Resource Management in
Flexible Duplex Networks [11.89735327420275]
本研究では,静的時間スケジューリングを伴わないフレキシブルネットワークの総和率について検討する。
NPハードな無線リソース管理問題におけるグラフネットワーク(GNN)の最近の成功により、我々はFlex-Netという新しいGNNアーキテクチャを提案する。
論文 参考訳(メタデータ) (2023-01-20T12:49:21Z) - Learning Cooperative Beamforming with Edge-Update Empowered Graph Neural
Networks [29.23937571816269]
グラフエッジ上での協調ビームフォーミングを学習するためのエッジグラフニューラルネットワーク(Edge-GNN)を提案する。
提案したEdge-GNNは、最先端の手法よりも計算時間をはるかに短くして、より高い和率を達成する。
論文 参考訳(メタデータ) (2022-11-23T02:05:06Z) - Unsupervised Optimal Power Flow Using Graph Neural Networks [172.33624307594158]
グラフニューラルネットワークを用いて、要求された電力と対応するアロケーションとの間の非線形パラメトリゼーションを学習する。
シミュレーションを通して、この教師なし学習コンテキストにおけるGNNの使用は、標準解法に匹敵するソリューションにつながることを示す。
論文 参考訳(メタデータ) (2022-10-17T17:30:09Z) - Learning Autonomy in Management of Wireless Random Networks [102.02142856863563]
本稿では,任意の数のランダム接続ノードを持つ無線ネットワークにおいて,分散最適化タスクに取り組む機械学習戦略を提案する。
我々は,ネットワークトポロジとは無関係に,前方および後方に計算を行う分散メッセージパスニューラルネットワーク(DMPNN)と呼ばれる,柔軟な深層ニューラルネットワーク形式を開発した。
論文 参考訳(メタデータ) (2021-06-15T09:03:28Z) - Fast Power Control Adaptation via Meta-Learning for Random Edge Graph
Neural Networks [39.59987601426039]
本稿では,時間変動トポロジに対する電力制御政策の迅速な適応を可能にする高レベル問題について検討する。
我々は,新しいネットワーク構成への数ショット適応を最適化するために,複数のトポロジのデータに一階のメタラーニングを適用した。
論文 参考訳(メタデータ) (2021-05-02T12:43:10Z) - Resource Allocation via Graph Neural Networks in Free Space Optical
Fronthaul Networks [119.81868223344173]
本稿では,自由空間光(FSO)フロントホールネットワークにおける最適資源割り当てについて検討する。
我々は、FSOネットワーク構造を利用するために、ポリシーパラメータ化のためのグラフニューラルネットワーク(GNN)を検討する。
本アルゴリズムは,システムモデルに関する知識が不要なモデルフリーでGNNを訓練するために開発された。
論文 参考訳(メタデータ) (2020-06-26T14:20:48Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
RRT(Rapidly-Exploring Random Trees)におけるクリティカルノードの特定やサンプリング分布の学習といった計画上の問題にGNNが取り組む能力について検討する。
臨界サンプリング、振り子、6つのDoFロボットアームによる実験では、GNNは従来の分析手法の改善だけでなく、完全に接続されたニューラルネットワークや畳み込みニューラルネットワークを用いた学習アプローチも示している。
論文 参考訳(メタデータ) (2020-06-11T08:19:06Z) - Wireless Power Control via Counterfactual Optimization of Graph Neural
Networks [124.89036526192268]
本稿では,無線ネットワークにおけるダウンリンク電力制御の問題点について考察する。
コンカレントトランスミッション間の干渉を軽減するために,ネットワークトポロジを活用してグラフニューラルネットワークアーキテクチャを構築する。
次に、教師なし原始対実対実最適化手法を用いて最適電力配分決定を学習する。
論文 参考訳(メタデータ) (2020-02-17T07:54:39Z) - Channel Assignment in Uplink Wireless Communication using Machine
Learning Approach [54.012791474906514]
本稿では,アップリンク無線通信システムにおけるチャネル割り当て問題について検討する。
我々の目標は、整数チャネル割り当て制約を受ける全ユーザの総和率を最大化することです。
計算複雑性が高いため、機械学習アプローチは計算効率のよい解を得るために用いられる。
論文 参考訳(メタデータ) (2020-01-12T15:54:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。