論文の概要: Physics-Enhanced Machine Learning: a position paper for dynamical systems investigations
- arxiv url: http://arxiv.org/abs/2405.05987v2
- Date: Sat, 8 Jun 2024 18:49:34 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-12 00:04:39.287697
- Title: Physics-Enhanced Machine Learning: a position paper for dynamical systems investigations
- Title(参考訳): 物理強化機械学習--動的システム研究のためのポジションペーパー
- Authors: Alice Cicirello,
- Abstract要約: 物理強化機械学習(英: Physics-Enhanced Machine Learning、PEML)は、科学機械学習とも呼ばれる。
PEMLアプローチの3つの幅広いグループについて論じる: 物理誘導、物理符号化、物理インフォームド。
複雑な力学系を含む工学アプリケーションにおいて, PEML 戦略の利点と課題について述べる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This position paper takes a broad look at Physics-Enhanced Machine Learning (PEML) -- also known as Scientific Machine Learning -- with particular focus to those PEML strategies developed to tackle dynamical systems' challenges. The need to go beyond Machine Learning (ML) strategies is driven by: (i) limited volume of informative data, (ii) avoiding accurate-but-wrong predictions; (iii) dealing with uncertainties; (iv) providing Explainable and Interpretable inferences. A general definition of PEML is provided by considering four physics and domain knowledge biases, and three broad groups of PEML approaches are discussed: physics-guided, physics-encoded and physics-informed. The advantages and challenges in developing PEML strategies for guiding high-consequence decision making in engineering applications involving complex dynamical systems, are presented.
- Abstract(参考訳): 本稿では、物理強化機械学習(PEML)(Scientific Machine Learningとしても知られる)を概観し、動的システムの課題に取り組むために開発されたPEML戦略に特に焦点をあてる。
機械学習(ML)戦略を超える必要性は次のとおりである。
(i)情報量の制限。
(二 正確な反りの予測を避けること。)
三 不確実性を扱うこと。
(iv)説明可能な解釈可能な推論を提供する。
PEMLの一般的な定義は、4つの物理とドメイン知識バイアスを考慮し、PEMLアプローチの3つの幅広いグループについて論じる: 物理誘導、物理符号化、物理インフォーム。
複雑な力学系を含む工学アプリケーションにおいて, PEML 戦略の利点と課題について述べる。
関連論文リスト
- Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
本稿では、基本概念、従来の手法、ベンチマークデータセットを紹介し、CFDを改善する上で機械学習が果たす様々な役割について検討する。
我々は,空気力学,燃焼,大気・海洋科学,生物流体,プラズマ,記号回帰,秩序の低減など,CFDにおけるMLの現実的な応用を強調した。
シミュレーションの精度を向上し、計算時間を短縮し、流体力学のより複雑な解析を可能にすることにより、MLはCFD研究を大きく変革する可能性があるという結論を導いた。
論文 参考訳(メタデータ) (2024-08-22T07:33:11Z) - Discussing the Spectrum of Physics-Enhanced Machine Learning; a Survey on Structural Mechanics Applications [3.430730454702436]
物理学と機械学習の交わりは、物理学の強化された機械学習(PEML)パラダイムを生み出した。
PEMLは、データまたは物理のみの手法の能力を向上し、個々の欠点を減らすことを目的としている。
本論文は, 科学・工学研究の限界を推し進める上で, PEMLの重要性を浮き彫りにするものである。
論文 参考訳(メタデータ) (2023-10-31T12:50:25Z) - A Critical Review of Physics-Informed Machine Learning Applications in
Subsurface Energy Systems [0.0]
物理インフォームド機械学習(PIML)技術は、物理原理をデータ駆動モデルに統合する。
PIMLは、モデルの一般化、物理法則の遵守、解釈可能性を改善する。
本稿では,主に石油・ガス産業における地下エネルギーシステムに関するPIML応用について概説する。
論文 参考訳(メタデータ) (2023-08-06T18:20:24Z) - Physics-Informed Machine Learning for Modeling and Control of Dynamical
Systems [0.0]
物理インフォームド機械学習(英: Physics-informed machine learning、PIML)は、機械学習(ML)アルゴリズムを物理的制約と体系的に統合する手法とツールのセットである。
PIMLの基本前提は、MLと物理の統合により、より効率的で、物理的に一貫性があり、データ効率のよいモデルが得られることである。
本稿では,動的システムモデリングと制御のためのPIMLの最近の進歩について,チュートリアルのような概要を提供する。
論文 参考訳(メタデータ) (2023-06-24T05:24:48Z) - Deep learning applied to computational mechanics: A comprehensive
review, state of the art, and the classics [77.34726150561087]
人工知能,特に深層学習(DL)の最近の進歩を概観する。
ハイブリッドおよび純粋機械学習(ML)の手法について論じる。
AIの歴史と限界は、特に古典の誤解や誤解を指摘し、議論され、議論される。
論文 参考訳(メタデータ) (2022-12-18T02:03:00Z) - Improving aircraft performance using machine learning: a review [57.82442188072833]
本稿では,航空宇宙工学の多分野に影響を及ぼす機械学習(ML)の新たな展開について概説する。
我々は、さまざまな航空宇宙分野にまたがるML手法の利点と課題を整理し、技術の現状を概観する。
論文 参考訳(メタデータ) (2022-10-20T07:16:53Z) - When Physics Meets Machine Learning: A Survey of Physics-Informed
Machine Learning [14.296078151381591]
物理インフォームド機械学習(PIML)は、トレーニングデータの不足を軽減し、モデルの一般化性を高め、結果の物理的妥当性を確保する効果的な方法である。
1)PIMLの動機,(2)PIMLの物理知識,(3)PIMLの物理知識統合の方法の3つの側面から,PIMLにおける最近の多くの研究を概説する。
論文 参考訳(メタデータ) (2022-03-31T04:58:27Z) - Learning Physical Concepts in Cyber-Physical Systems: A Case Study [72.74318982275052]
本稿では,時系列データにおける物理概念の学習方法に関する研究の現状について概説する。
また,3タンクシステムの例を用いて,最先端技術から最も重要な手法を分析した。
論文 参考訳(メタデータ) (2021-11-28T14:24:52Z) - Panoramic Learning with A Standardized Machine Learning Formalism [116.34627789412102]
本稿では,多様なMLアルゴリズムの統一的な理解を提供する学習目的の標準化された方程式を提案する。
また、新しいMLソリューションのメカニック設計のガイダンスも提供し、すべての経験を持つパノラマ学習に向けた有望な手段として機能する。
論文 参考訳(メタデータ) (2021-08-17T17:44:38Z) - Theory-Guided Machine Learning for Process Simulation of Advanced
Composites [0.0]
Theory-Guided Machine Learning (TGML)は、物理法則をMLアルゴリズムに統合することを目指している。
本稿では, 複合材料の加工過程における熱管理に関する3つのケーススタディについて述べる。
論文 参考訳(メタデータ) (2021-03-30T00:49:40Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
機械学習はデータに対する深い洞察を与え、マシンが高品質な予測を行うことを可能にする。
ほとんどの高度な機械学習アプローチは、大規模なデータを扱う場合の膨大な時間コストに悩まされる。
大規模機械学習は、ビッグデータからパターンを、同等のパフォーマンスで効率的に学習することを目的としている。
論文 参考訳(メタデータ) (2020-08-10T06:07:52Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。