論文の概要: Deep Learning-Based Residual Useful Lifetime Prediction for Assets with Uncertain Failure Modes
- arxiv url: http://arxiv.org/abs/2405.06068v1
- Date: Thu, 9 May 2024 19:37:57 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 17:26:24.677108
- Title: Deep Learning-Based Residual Useful Lifetime Prediction for Assets with Uncertain Failure Modes
- Title(参考訳): 深層学習に基づく不確かさモードのアセットに対する残効寿命予測
- Authors: Yuqi Su, Xiaolei Fang,
- Abstract要約: 複数の障害モードを持つシステムの既存の予後モデルは、現実のアプリケーションにおいていくつかの課題に直面している。
本研究は,混合(log-location-scale distribution)と深層学習を組み合わせた2つの予後モデルを提案する。
- 参考スコア(独自算出の注目度): 1.2277343096128712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Industrial prognostics focuses on utilizing degradation signals to forecast and continually update the residual useful life of complex engineering systems. However, existing prognostic models for systems with multiple failure modes face several challenges in real-world applications, including overlapping degradation signals from multiple components, the presence of unlabeled historical data, and the similarity of signals across different failure modes. To tackle these issues, this research introduces two prognostic models that integrate the mixture (log)-location-scale distribution with deep learning. This integration facilitates the modeling of overlapping degradation signals, eliminates the need for explicit failure mode identification, and utilizes deep learning to capture complex nonlinear relationships between degradation signals and residual useful lifetimes. Numerical studies validate the superior performance of these proposed models compared to existing methods.
- Abstract(参考訳): 産業統計学は、複雑な工学系の残余の有用寿命を予測し、継続的に更新するために劣化信号を活用することに焦点を当てている。
しかし、複数の障害モードを持つシステムの既存の予後モデルは、複数のコンポーネントからの劣化信号の重複、ラベルのない履歴データの存在、異なる障害モードにわたる信号の類似性など、現実の応用においていくつかの課題に直面している。
これらの問題に対処するため,本研究では,混合(log-location-scale distribution)と深層学習を組み合わせた2つの予後モデルを提案する。
この統合は重なり合う劣化信号のモデリングを容易にし、明示的な故障モードの識別の必要性を排除し、深層学習を利用して劣化信号と残余の有用寿命の間の複雑な非線形関係をキャプチャする。
従来の手法と比較して,提案手法の優れた性能を検証した。
関連論文リスト
- USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
本研究では,データ拡張とソフトコントラスト学習の組み合わせを導入し,より正確に状態行動の多面的特性を捉えることを目的としている。
この二重戦略は、正常な状態と異常な状態を区別するモデルの能力を著しく向上させ、複数のデータセットと設定で障害検出性能が著しく向上する。
論文 参考訳(メタデータ) (2024-05-25T14:48:04Z) - Degradation Modeling and Prognostic Analysis Under Unknown Failure Modes [17.72961616186932]
操作ユニットは複雑なシステムで様々な障害モードを経験します。
現在の予測的アプローチは、劣化中の障害モードを無視したり、既知の障害モードラベルを仮定する。
センサ信号の高次元性と複雑な関係は、故障モードを正確に識別することが困難である。
論文 参考訳(メタデータ) (2024-02-29T15:57:09Z) - Distributionally Robust Model-based Reinforcement Learning with Large
State Spaces [55.14361269378122]
強化学習における3つの大きな課題は、大きな状態空間を持つ複雑な力学系、コストのかかるデータ取得プロセス、トレーニング環境の展開から現実の力学を逸脱させることである。
広範に用いられているKullback-Leibler, chi-square, および全変分不確実性集合の下で, 連続状態空間を持つ分布ロバストなマルコフ決定過程について検討した。
本稿では,ガウス過程と最大分散削減アルゴリズムを用いて,多出力名目遷移力学を効率的に学習するモデルベースアプローチを提案する。
論文 参考訳(メタデータ) (2023-09-05T13:42:11Z) - A Bi-fidelity DeepONet Approach for Modeling Uncertain and Degrading
Hysteretic Systems [0.0]
我々は、ヒステリックシステムの劣化効果を低忠実度表現として考慮せずに、プリスタンモデルからのデータセットを使用する。
低忠実度モデルと真のシステム応答の相違をモデル化するために提案したDeepONetsを用いることで、予測誤差が大幅に改善されることが示されている。
論文 参考訳(メタデータ) (2023-04-25T06:49:56Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
トレーニングデータに制限がある現実的なシナリオでは、データ内の多くの予測信号は、データ取得のバイアスからより多く得る。
我々は,相互情報制約の下で,より広い範囲の摂動をカバーできる敵の脅威モデルを考える。
そこで本研究では,その目的を実現するためのオートエンコーダベーストレーニングと,提案したハイブリッド識別世代学習を促進するための実用的なエンコーダ設計を提案する。
論文 参考訳(メタデータ) (2023-03-24T16:03:21Z) - Non-linear manifold ROM with Convolutional Autoencoders and Reduced
Over-Collocation method [0.0]
非アフィンパラメトリックな依存、非線形性、興味のモデルにおける対流支配的な規則は、ゆっくりとしたコルモゴロフ n-幅の崩壊をもたらす。
我々は,Carlbergらによって導入された非線形多様体法を,オーバーコロケーションの削減とデコーダの教師/学生による学習により実現した。
本研究では,2次元非線形保存法と2次元浅水モデルを用いて方法論を検証し,時間とともに動的に進化する純粋データ駆動型手法と長期記憶ネットワークとの比較を行った。
論文 参考訳(メタデータ) (2022-03-01T11:16:50Z) - Learning Mixtures of Linear Dynamical Systems [94.49754087817931]
そこで我々は,2段階のメタアルゴリズムを開発し,各基底構造LPSモデルを誤り$tildeO(sqrtd/T)$.sqrtd/T)まで効率的に復元する。
提案手法の有効性を検証し,数値実験による理論的研究を検証する。
論文 参考訳(メタデータ) (2022-01-26T22:26:01Z) - Revisiting Design Choices in Model-Based Offline Reinforcement Learning [39.01805509055988]
オフライン強化学習により、エージェントは環境遷移の大規模な収集済みデータセットを利用して制御ポリシーを学習することができる。
本稿では、モデル数や仮想ロールアウト地平線など、他のハイパーパラメータとの相互作用を研究するための新しいプロトコルを比較し、設計する。
論文 参考訳(メタデータ) (2021-10-08T13:51:34Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetectionは,ハイブリッド生産システムにおける自動モデル学習と異常検出のための新しいアプローチである。
深層学習とタイムドオートマトンを組み合わせて、観察から行動モデルを作成する。
このアルゴリズムは実システムからの2つのデータを含む少数のデータセットに適用され、有望な結果を示している。
論文 参考訳(メタデータ) (2020-10-29T08:27:43Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - When Relation Networks meet GANs: Relation GANs with Triplet Loss [110.7572918636599]
GAN(Generative Adversarial Network)の学習安定性はいまだに悩みの種である
本稿では,判別器のための関係ネットワークアーキテクチャについて検討し,より優れた一般化と安定性を実現する三重項損失を設計する。
ベンチマークデータセットの実験により、提案された関係判別器と新たな損失は、可変視覚タスクに大幅な改善をもたらすことが示された。
論文 参考訳(メタデータ) (2020-02-24T11:35:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。